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Chapter 1

Gases and Equations of State

1.1 Ideal Gases

The molecules in an ideal gas have

• no attractive intermolecular interactions

• effectively zero volume relative to the container

Their behaviour is described by the ideal gas law:

PV = nRT (1.1)

where P is pressure, V is volume, T is temperature in Kelvin, n is the number of gas
molecules, and R is the gas constant.

This is valid in the limits of high T , low P , and large V .

This relation is called an equation of state, which is a mathematical relationship between
the quantities that describe a chemical system.

The value of R is dependent on the units of P and V :

• R = 8.314 J K−1 mol−1 for P in Pa, V in m3.

• R=0.08206 L atm K−1 mol−1 for P in atm, V in L.

Note that 1 Pa = 1 N m−2 = 1 J m−3 and 1 L = 10−3 m3

Pressures can also be given in Torr (mm of Hg from a barometer), with 760 Torr = 1 atm.
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1.1. Ideal Gases 5

Writing the ideal gas law in terms of the intensive variables (independent of the quantity of
matter):

PV̄ = RT

where V̄ = V/n is the molar volume.

The molar volume of an ideal gas at 1 atm and 0◦C (273 K) is 22.4 L/mol (independent of
composition).

This allows the molar mass to be determined by weighing a set volume of an ideal gas.

In experiments, one intensive variable is typically held constant:

• constant T for a heat/ice bath – isothermal process

• constant P for a flask left open to the air – isobaric process

• constant V for a sealed reaction vessel – isochoric process

The ideal gas law was formulated by combining known behaviour for each of these paths.

P = (RT )
1

V̄
or PV̄ = constant

Inverse relationship, P increases as V decreases and vice
versa. This is Boyle’s law.

V̄ =

(
R

P

)
T

Volume increases with T , so the gas expands when heated.
The extent of expansion is lower at higher P . This is
Charles’ law.

P =

(
R

V̄

)
T

Pressure increases with T as the gas is heated and the extent
of increase is lower for larger volume. This is Gay-Lussac’s
law.

For a mixture of gases, the ideal gas law applies to the total n and P – concentrations of the
individual components are given by their partial pressures:

Pi =
ni
n
P or Pi = xiP
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where xi = ni/n is the mole fraction of gas i. The total number of moles is n =
∑

i ni and
the total pressure is the sum of the partial pressures, P =

∑
i Pi

1.2 Introduction of Partial Derivatives

Recall that, for a function f that involves a product of two variables x and y,

f = xy

to take the derivative, use product rule:

d

dx
(f) =

df

dx
=
dx

dx
y + x

dy

dx
= y + x

dy

dx

However, for partial derivative, ∂f
∂x

or ∂f
∂y

, assume the other variable is a constant. This is like
taking a level path around a hill, instead of any other path, where your elevation is changing.

∂f

∂x
=
∂x

∂x
y = y

∂f

∂y
= x

∂y

∂y
= x

1.3 Real Gases

The ideal gas law predicts that V̄ , P → 0 as T → 0, which is not physically reasonable. This
is a consequence of the assumptions of non-interacting, infinitely-small gas molecules.

To modify the ideal gas law, we need to account for the size of the molecules, which decreases
the available volume, so

P =
RT

V̄ − b
where b is the molar volume of the compound in the condensed (solid or liquid) phase reached
at low temperature. This can be treated as a molecule-specific constant, since solids and
liquids are very much less compressible than gases. Rearranging gives

V̄ =
RT

P
+ b

and prevents the unphysical ideal-gas result that V̄ → 0 as T → 0 or P →∞.

Additionally, there are attractive, intermolecular interactions between real gas molecules
called van der Waals interactions, due to London dispersion, dipole-dipole interactions,
hydrogen-bonding, etc.
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These can be represented by a Lennard-Jones 6-12 potential, which described the potential
energy curve between two molecules.

E = ε

[(rm
R

)12

− 2
(rm
R

)6
]

The strength of the specific intermolecular interac-
tion determines the well depth or binding energy (ε)
and the optimum (or minimum-energy) intermolec-
ular separation (rm).

Attractive intermolecular interactions cause a reduction in the gas pressure. Because the
interactions are pairwise, the pressure lowering is proportional to the square of the gas
concentration (1/V̄ 2)

P =
RT

V̄ − b
− a

V̄ 2
(1.2)

a is a positive, molecule-specific constant that describes the intermolecular interaction strength.
It roughly corresponds to the vapourization energy of the liquid or the boiling point.

The relation is called the van der Waals equation of state and is sometimes rewritten as:(
P +

a

V̄ 2

) (
V̄ − b

)
= RT (1.3)

To determine if a particular gas is behaving ideally, consider the ratio Z = P V̄
RT

, called the
compression factor.

Z = 1 ideal gas behaviour

Z < 1 P < Pideal attraction dominates

Z > 1 P > Pideal repulsion dominates

Plots of Z(P ) reveal these different regimes.

As P → 0 the gas is more ideal and Z → 1.

At low to moderate P , attraction dominates, Z < 1.

At high P , repulsion dominates, Z > 1.

The stronger the intermolecular interactions, the
greater the attractive dip and the deviation from ideal
behaviour.
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To describe these curves using the vdW equation of state

Z =
PV̄

RT
=

(
RT

V̄ − b
− a

V̄ 2

)
V̄

RT
=

1

1− b/V̄
− a

RT V̄

At low pressure, b/V̄ << 1 so 1
1−b/V̄ ≈ 1 + b/V̄ (from the Taylor expansion). Using this in

the expansion for Z,

Z = 1 +
(
b− a

RT

) 1

V̄

and substituting for V̄ ,

Z = 1 +
(
b− a

RT

) P

RT

The initial slope of Z(P ) is given by

∂Z

∂P

∣∣∣∣
P=0

=
1

RT

(
b− a

RT

)
This, when T is low, the attractive − a

RT
term dominates and Z < 1. When T is high, the

repulsive b term dominates and Z > 1. At some intermediate temperature, called the Boyle
temperature, the initial slope is zero and the gas behaves nearly ideally over a large pressure
range (

b− a

RTB

)
= 0 ⇒ TB =

a

bR

so the effects of molecular size and intermolecular interactions roughly compensate.

1.4 Phase Diagrams and Isotherms

Phase diagram for a single-
component system. The
lines separate the distinct
phase regions.

For Ttriple < T < Tc, a gas can condense if P is increased. A g ⇀↽ ` equilibrium occurs at the
points on the curve between the two phases.

For T ≥ Tc, there are no longer distinct gas and liquid phases, but a single phase, called a
supercritical fluid.
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The change that a gas undergoes at fixed T is depicted by plots of P vs. V̄ , called isotherms.
These can be generated for gas in a sealed vessel compressed by a piston.

For T < Tc, there are 3 regimes in the isotherm. At low P , the system is all gaseous and
P ∝ 1/V̄ , as for an ideal gas. When the pressure reaches the co-existence line on the phase
diagram, it remains constant as the liquid condenses. When all the liquid has condensed, the
pressure increases sharply with further decreases in volume due to the high compressibility.

As T → Tc, the volume range spanned by the plateau decreases and at Tc there is only an
inflection point.

For T > Tc, there is only a single phase and the isotherm resembles that of an ideal gas.

The vdW equation of state gives improved isotherms relative to the ideal gas law, but will
break down for V̄ < b and at very low T , where it gives unphysical, negative pressures.

The vdW equation of state captures the inflec-
tion point, but for T < Tc gives 3 roots for V̄
because of its cubic form.

Rearranging the vdW equation to show its cubic form:

(
P +

a

V̄

) (
V̄ − b

)
= RT(

PV̄ 2 + a
) (
V̄ − b

)
= RTV̄ 2

PV̄ 3 −RTV̄ 2 − bP V̄ 2 + aV̄ − ab = 0

V̄ 3 −
(
RT

P
+ b

)
V̄ 2 +

( a
P

)
V̄ − ab

P
= 0
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There are 3 roots for V̄ given a set P ,T . To approximate the horizontal part of the isotherm,
we use the Maxwell construction, in which the oscillating part of the isotherm is divided into
two regions of equal area.

The vdW equation of state can also be used to predict the position of the critical point,
where all 3 roots are equal: (

V̄ − V̄c
)3

= 0

V̄ 3 − 3V̄cV̄
2 + 3V̄ 2

c V̄ − V̄ 3
c = 0

Equating the coefficients with the equation above

RTc
Pc

+ b = 3V̄c

a

Pc
= 3V̄ 2

c

ab

Pc
= V̄ 3

c

⇒

⇒

⇒

Tc =
Pc
R

(
3V̄c − b

)
Pc =

a

3V̄ 2
c

Pc =
ab

V̄ 3
c

Solving for V̄c, Pc, and Tc in terms of a and b,

a

3V̄ 2
c

=
ab

V̄ 3
c

Pc =
a

3(3b)2

Tc =
a

27b2R
(9b− b)

⇒

⇒

⇒

V̄c = 3b

Pc =
a

27b2

Tc =
8a

27Rb

In practise, it is more common for experimental measurements of Tc and Pc to be used to
determine a and b parameters for a particular gas.

Solving for a and b in terms of Tc and Pc,

RTc
Pc

+ b = 3(3b)

a = 27Pc

(
RT

8Pc

)2

⇒

⇒

b =
RTc
8Pc

a =
27

64

(RTc)
2

Pc
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1.5 Kinetic Theory of Gases

A gas is composted of a very large number of atoms of molecules moving in all directions at
a distribution of speeds and obeying the classical equations of motion. The molecules collide
with each other and with the container elastically, meaning that the total kinetic energy is
conserved.

The pressure of the gas is due to the force (per unit area) exerted
on the container from impacts and rebounds of the gas molecules.
The force is the average momentum, times the collision rate.

P =
1

3
Nmc2/V

N is the number of molecules, m is the mass, c is the average velocity, and the factor of 1/3
is present because the velocity is evenly distributed in the x, y, and z directions.

Also, the kinetic energy for translational motion of one mole of gas is

Utrans =
1

2
NAmc

2

Substituting the result for pressure,

Utrans =
3

2

NA

N
PV =

3

2

PV

n

where n is the moles of gas. Using the ideal gas law, the total translational kinetic energy is

Utrans =
3

2
RT

which is evenly distributed as 1
2
RT from each of the x, y, z directions (or degrees of freedom).

This is called the equipartition law.

Similarly, the kinetic energy from rotation of a mole of molecules is 1
2
RT for each direction

of rotation (2D for linear molecules, 3D for non-linear).

Urot = RT (linear molecules)

Urot =
3

2
RT (non-linear molecules)

This is the average kinetic energy for one mole. The kinetic energy of each atom or molecule
follows a probability distribution, called the Maxwell-Boltzmann distribution.
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f(E) = 2π

(
1

RT

)3/2

E1/2e−E/RT

Higher temperatures shift the average kinetic
energy to higher values and broaden the dis-
tribution.



Chapter 2

The Laws of Thermodynamics

2.1 The Zeroth Law of Thermodynamics

When two systems are brought into thermal contact, they will reach equilibrium, sharing a
common temperature.

Two systems that are in thermal equilibrium with a third system must be in thermal equi-
librium with each other.

This makes sense in terms of kinetic theory since gases at different temperatures will transfer
energy via elastic collisions. The hotter (faster) molecules will lose energy on average and the
colder (slower) molecules will gain energy on average, until a new, intermediate distribution
is reached.

13
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The final T will depend on the initial temperatures and heat capacities of the two systems.

The heat capacity is the amount of energy required to raise the temperature of a system by
1 K.

For a system with constant volume, the heat capacity is

CV =

(
∂U

∂T

)
V

which is the partial derivative of U with respect to T at constant V .

For an ideal gas, CV can be obtained from kinetic theory

CV =
3

2
R monoatomic gas

CV =
5

2
R diatomic (or other linear) gas molecules

CV = 3R non-linear gas molecules

CV can be higher than this estimate, particularly at high T or for heavy elements, due to
vibrational motion, which is neglected here.

2.2 Thermodynamic Definitions

System and surroundings – the system is the particular thing
of interest, while the surroundings is everything else and is
separated from the system by a boundary. The surroundings
can be viewed as a reservoir of energy, some of which can be
exchanged with the system via heat and work.

A system is isolated if no matter or energy can cross the boundary.

A system is closed if energy can cross the boundary, but not matter. This means the system
is in thermal contact with the surroundings.

A system is open if both matter and energy can cross the boundary.

The state of a system is determined by its chemical and physical properties and is specified
by the composition and two other independent variables – two of T , P , and V .

Change of state – the system undergoes a change in P , T , V from an initial (i) to final (f)
state, as a new equilibrium is reached.
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Path – exactly how the initial state is changed to the final state.

Path function – quantities that depend on the particular path of a change of state (heat and
work).

State function – quantities that depend only on the state of the system and not on the path
(energy, enthalpy, entropy, free energy).

Reversible path – the state is changed infinitely slowly so that the system remains in a quasi-
equilibrium with the surroundings. Real processes are not reversible, but this is a convenient
path to consider in calculations.

Irreversible path – the state is changed quickly, with large, finite changes in P , T , or V .
Real processes are irreversible.

Internal energy (U) – the total energy of all molecules in the system. It is a sum of kinetic
(translation, rotational, and vibrational) and potential (intermolecular and intramolecular)
energies.

Heat (q) – a mode of energy transfer resulting from a temperature imbalance between the
system and surroundings. From the zeroth law, heat will be transferred until thermal equi-
librium is reached. The head transferred is proportional to the temperature gradient and
depends on the heat capacity.

q =

∫ f

i

CdT (2.1)

By convention, heat is positive when it is transferred to the system from the surroundings,
to raise the system’s internal energy.

Work (w) – a mode of energy transfer resulting from a change in the volume of the system,
subject to an external pressure from the surroundings. Work is force times distance, and
force is pressure times area, so

w = −
∫ f

i

PextdV (2.2)

By convention, work is positive when work is done on the system, so that its volume decreases,
raising the system’s internal energy. Note that the work is given in terms of the applied,
external pressure, not the system pressure.
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2.3 The First Law of Thermodynamics

For a change of state, heat and work are transferred between the system and surroundings,
so that the change in the system’s internal energy is

∆U = q + w (2.3)

∆U is a state function, so for a cyclic process with the same initial and final states, ∆U = 0,
and the heat and work offset. Heat transferred to the system is offset by work done by the
system. Heat transferred to the surroundings is offset by work done by the surroundings.

The total energy of the system and surroundings is conserved for any change of state, which
is another statement of the first law.

∆Usys = −∆Usurr

Since U is independent of path, a practical approach to problems is to use the path where
calculation of q and w is easy.

2.4 Work over Different Paths

Irreversible, constant Pext – to evaluate the integral, we need Pext(V ); for constant Pext, this
gives

w = −Pext

∫ f

i

dV = −Pext∆V

an example is expansion against a piston with constant applied weight.

For an irreversible process, there is a sharp change in Pext as
the weight on the piston is removed. The work done is the
area under the curve.

Reversible paths – Pext equals the gas pressure since the system remains in quasi-equilibrium
with the surroundings.

• Isochoric change (constant V ): ∆V = 0 so w = 0

• Isobaric change (constant P ): w = −P
∫ f
i
dV = −P∆V
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• Isothermal change (constant T ): w = −
∫ f
i
P (V )dV and we need to obtain P (V ) from

an equation of state.

For an ideal gas, P = nRT/V so the integral is

w = −nRT
∫ f

i

dV

V
= −nRT ln

(
Vf
Vi

)
For a vdW gas, use

P =
nRT

V − nb
− an2

V 2

in the integrand.

For a reversible process, the gas pressure changes gradually,
as 1/V . The area under the curve can be viewed as an infinite
number of irreversible steps.

The reversible path provides the maximum area or maximum work.

2.5 Heat over Different Paths

The heat capacity is frequently treated as a constant as it only changes significantly over
large temperature ranges, or near zero Kelvin. However, the particular heat capacity still
depends on the path.

• Isochoric path (constant V ) – use CV :

q = CV

∫ f

i

dT = CV ∆T

• Isobaric path (constant P ) – use CP :

q = CP

∫ f

i

dT = CP∆T

At constant V , no work is done and all energy transferred to the system serves to raise
T . At constant P , some of the energy transferred must must be used to do the work
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needed to maintain the pressure, so more energy is required to raise T by the same
amount and CP > CV .

For an ideal gas, we will show later that

C̄P = C̄V +R or CP = CV + nR (2.4)

For a liquid or solid, the volume change is negligible, so CP ≈ CV .

• Isothermal path (constant T ) – ∆T = 0 but that does not mean that q = 0 as heat
will be transferred to or from the system to maintain the constant temperature. Here,
q must be obtained from the first law:

q = ∆U − w

For the case of an ideal gas, ∆U = 0 when ∆T = 0 (only kinetic energy as there are
no intermolecular interactions), so q = −w.

2.6 Energy and Enthalpy

Returning to the first law, ∆U = q + w, and ∆U is determined by evaluating q and w over
a particular path.

For an isochoric path (constant V ), q = CV ∆T and ∆V = 0 so w = 0.

∆U = CV ∆T isochoric path, or ideal gas any path (2.5)

This also holds for an ideal gas for any process, since ∆U depends only on changes in T .

∆U can thus be measured from the heat of reaction performed under constant V (bomb
calorimeter). However, in chemistry, it is much more common to carry out reactions at
constant P (open vessel on the bench top).

For an isobaric path (constant P ), q = CP∆T and w = −P∆V .

∆U = CP∆T − P∆V isobaric path

Rearranging gives CP∆T = ∆U + P∆V .

The RHS is a combination of state functions (U, P, V ), so the LHS must also be a state
function. We define a new state function, the Enthalpy, H:

∆H = ∆U + ∆(PV )
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Thus,

∆H = CP∆T isobaric path, or ideal gas any path (2.6)

and ∆H can be measured from the heat of reaction performed under constant P .

For an ideal gas with constant n, the relation between ∆H and ∆U can be simplified to

∆H = ∆U + nR∆T

2.7 Adiabatic Processes

For a thermally-insulating boundary, no heat is transferred from the surroundings, so q = 0
and ∆U = w.

For adiabatic expansion, ∆V > 0, so the internal energy and T decrease.

For adiabatic compression, ∆V < 0, so the internal energy and T increase.

The temperature change will depend on the work and heat capacity. Looking at the relation
between the differentials (infinitesimally small changes in U and w),

dU = CV dT = −PextdV

For constant external pressure, we can integrate to obtain

∆U = CV ∆T = −Pext∆V

Tf = Ti −
Pext

CV
(Vf − Vi)

The final pressure will equilibrate to the external pressure, so for an ideal gas,

Tf = Ti −
Pext

nC̄V

(
nRTf
Pext

− nRTi
Pi

)

Tf

(
1 +

R

C̄V

)
= Ti

(
1 +

R

C̄V

Pext

Pi

)

For a reversible adiabatic process involving an ideal gas, Pext = P = nRT/V . Returning to
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the differentials:

CV dT = −PextdV

CV dT = −nRT
V

dV

CV

∫ f

i

dT

T
= −nR

∫ f

i

dV

V

ln

(
Tf
Ti

)
= −nR

CV
ln

(
Vf
Vi

)
ln

(
Tf
Ti

)
=

R

C̄V
ln

(
Vi
Vf

)
Tf = Ti

(
Vi
Vf

)R/C̄V

Once Tf is determined, the total energy change is ∆U = CV ∆T .

The ideal gas relation can be used repeatedly to obtain:

Tf = Ti

(
Pf
Pi

)R/C̄P

and Pf = Pi

(
Vi
Vf

)1+R/C̄V

The pressure is now proportional to 1/V (1+R/C̄V ) rather than the usual 1/V , so the pressure
drop is greater for adiabatic expansion than for isothermal expansion This occurs because
no heat is transferred from the surroundings, so the lower system T causes a lower final P .

Conversely, the volume is now proportional to 1/P (1−R/C̄V ) rather than the usual 1/P , so
the volume change is greater for isothermal expansion than for adiabatic expansion.

For the same pressure change, we will have

wadiab,rev < wisoth,rev

The isothermal process generates more work than
the adiabatic since the heat transferred from the
surroundings in the isothermal case drives further
expansion.
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2.8 Thermochemistry

Chemical processes are described by whether heat is required or released, which is given by
the sign of the enthalpy change.

Exothermic:

• ∆H < 0

• heat given off to
surroundings

• final state more stable

Endothermic:

• ∆H > 0

• heat absorbed from
surroundings

• final state less stable

There are no “absolute” enthalpy values – we always report changes in enthalpy for various
processes, typically per mole of reactants or products.

Physical changes:

∆Hvap – heat of vapourization (`→ g)

∆Hfus – heat of fusion (s→ `)

∆Hsub – heat of sublimation (s→ g)

∆Hsol – heat of solvation (s→ solution)

Chemical changes:

• Ionization enthalpy – enthalpy for removal of an electron.

EX. Na(g) −→ Na+
(g) + e−

• Bond dissociation enthalpy – enthalpy to break a chemical bond.

EX. C2H6(g) −→ 2CH3(g)

• Atomization enthalpy – enthalpy to break a substance into isolated atoms.

EX. C2H6(g) −→ 2C(g) + 6H(g)

However these involve unstable, reactive species like H, C, CH3. Instead, we typically tabu-
late either:
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• Enthalpy/heat of combustion – enthalpy change for reaction of one mole of a compound
with O2(g), yielding complete conversion to CO2(g) and H2O(`).

EX. C2H6(g) +
7

2
O2(g) −→ 2CO2(g) + 3H2O(`) ∆H◦

comb[C2H6(g)]

• Enthalpy/heat of formation (∆H◦
f ) – enthalpy change for formation of one mole of a

compound from the elements in their standard states.

EX. 2C(s,graphite) + 3H2(g) −→ C2H6(g) ∆H◦
f [C2H6(g)]

EX. H2(g) +
1

2
O2(g) −→ H2O(`) ∆H◦

f [H2O(`)]

The standard state (◦) of a substance is its most stable state at P = 1 atm. Standard
enthalpies are typically reported at 298 K. The enthalpy of formation of an element in its
standard state is zero since reactants/products are identical.

EX. ∆H◦
f [O2(g)] = 0

Because enthalpy is a state function, ∆H for any reaction is a sum of enthalpy changes for
a set of component steps – this is Hess’s law.

EX. Combustion of methane:

C(s,graphite) + O2(g) −→ CO2(g) ∆H◦
f [CO2(g)]

2H2(g) + O2(g) −→ H2O(`) 2∆H◦
f [H2O(`)]

CH4(g) −→ C(s,graphite) + H2(g) −∆H◦
f [CH4(g)]

CH4(g) + 2O2(g) −→ CO2(g) + 2H2O(`) ∆H◦
comb[CH4(g)]

Thus,
∆H◦

comb[CH4(g)] = ∆H◦
f [CO2(g)] + 2∆H◦

f [H2O(`)]−∆H◦
f [CH4(g)]

by summing the individual steps.

In general, the enthalpy change for a process is

∆H =
∑

products

νi∆H
◦
f [i]−

∑
reactants

νi∆H
◦
f [i] (2.7)

where the νi are the stoichiometric coefficients in the balanced chemical equation.

EX. aA + bB −→ cC + dD

∆H = c∆H◦
f [C] + d∆H◦

f [D]− a∆H◦
f [A]− b∆H◦

f [B]



2.8. Thermochemistry 23

Enthalpy measurements typically use bomb calorimeters, which are sealed vessels to prevent
escape of gas. This is an isochoric process, so the heat of reactions is described by ∆U =
CV ∆T rather than ∆H. Assuming ideal gases,

∆H = ∆U + ∆nRT

where ∆n is the change in the number of moles of gas in the balanced reaction. More
generally,

∆H = ∆U + ∆(PV )

and we will consider how to evaluate the ∆(PV ) term for non-ideal gases later as these
depend on the intermolecular interactions.

To predict ∆H for temperatures other than the standard 298 K, we need to consider how
the enthalpies of the reactants and products vary with temperature.

From the kinetic model, the internal energy, and consequently the enthalpy, will increase
with T due to the higher kinetic energy. However, the enthalpies of the reactants/products
may increase at different rates, depending on their constant-pressure heat capacities:

CP =

(
∂H

∂T

)
P

For a single species,

H◦
T2

= H◦
T1

+

∫ T2

T1

CPdT

and ∆H for the reaction is

∆H◦ = H◦(products)−H◦(reactants)
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For ∆H at a non-standard temperature T , rather than the standard temperature T0,

∆H◦
T = ∆H◦

T0
+

∫ T

T0

CP (products)dT −
∫ T

T0

CP (reactants)dT

∆H◦
T = ∆H◦

T0
+

∫ T

T0

∆CPdT

where ∆CP = CP (products)−CP (reactants). This result is called Kirchoff’s law. In general,
we need an expression for ∆CP (T ) to integrate, but if the temperature range is small, the
individual CP ’s can be considered constant and

∆H◦
T = ∆H◦

T0
+ ∆CP (T − T0) = ∆H◦

T0
+ ∆CP∆T

2.9 Entropy

So far, we have predicted final states of various processes, but not whether they occur
spontaneously or whether they require an input of energy.

Spontaneous processes are characterized by energy becoming more dispersed and matter
becoming more disordered.

For example, when two blocks of metal at different temperatures are brought into thermal
contact, heat will flow from the hot block to the cold one (according to the zeroth law). The
kinetic energy of the molecules will become more dispersed between the blocks.

It is not spontaneous for the hot block to get hotter and the cold block to get colder, which
would result in a more concentrated distribution of kinetic energy.

To quantify the extent of randomization of energy, we propose a new state function, the
entropy, S. It is related to the amount of heat transferred by the differential equation

dS =
dqrev

T
or ∆S =

∫ f

i

dqrev

T
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Since q depends on the path, we need to pick a specific path to ensure that S is a state
function. The reversible path is chosen for convenience.

At very low temperature, the system is highly ordered so introducing heat will cause relatively
more randomness

very low T
ordered lattice
of molecules

higher T
molecules rotate and
vibrate in lattice

and this results in a greater increase in disorder compared to a gas at high temperature that
is already very disordered – adding more heat does not cause as large a change in entropy.
This, in the definition of S, we divide by T since adding heat will result in a greater increase
in disorder at lower temperatures.

2.10 The Second Law of Thermodynamics

The overall entropy of the universe (system + surroundings) must increase for a process to
be spontaneous.

∆Ssys + ∆Ssurr > 0

Recall that the entropy of the system is

∆Ssys =

∫ f

i

dqsys,rev

T

For a reversible process, qsurr = −qsys,rev so

∆Ssurr =

∫ f

i

dqsurr

T
= −

∫ f

i

dqsys,rev

T
= −∆Ssys

so ∆Ssys + ∆Ssurr = 0 for a reversible process and neither the forward or reverse process is
spontaneous. This makes sense since, for a reversible process, the system and surroundings
are in quasi-equilibrium.

For irreversible processes, qsurr = −qsys,irrev 6= −qsys,rev and ∆Ssurr 6= −∆Ssys. Thus, the
difference between the reversible and irreversible processes is the entropy change of the
surroundings.

2.11 Entropy Changes for Different Processes

• Adiabatic process: no heat is transferred, so dqrev = 0 and ∆S = 0
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• Isochoric process: dV = 0 so dU = CV dT = dqrev

∆S =

∫ f

i

dqrev

T
=

∫ f

i

CV dT

T
= CV ln

(
Tf
Ti

)
• Isothermal process: T is constant, so ∆S = qrev

T

For a phase change (i.e. ` ⇀↽ g), the process is both isothermal and isobaric, but CP is
not constant since it is different for each phase.

∆H = qrev|P so ∆S =
∆H

T
(phase change)

• Ideal gas, any process: the energy is dU = CV dT and from the first law, dU =
dqrev − PdV . Equating these and rearranging,

dqrev = CV dT + PdV

using the ideal gas law,

dqrev = CV dT + nRT
dV

V

dqrev

T
= CV

dT

T
+ nR

dV

V

∆S =

∫ f

i

dqrev

T
= CV

∫ f

i

dT

T
+ nR

∫ f

i

dV

V

∆S = CV ln

(
Tf
Ti

)
+ nR ln

(
Vf
Vi

)
ideal gas

2.12 Absolute Entropy and the Third Law

The third law defines an absolute entropy scale. The entropy of a perfectly-ordered crystal
is zero at 0 K. This means that all substances have a positive entropy at finite temperatures,
where they show thermal motion and are disordered.

The absolute entropy at any temperature can be obtained by integrating the entropy expres-
sion from 0 to T

S(T ) =

∫ T

0

dqrev

T

The integration is typically performed along the isobaric path for convenience and requires
the heat capacities of each phase, along with the heats of fusion and vapourization

S(T ) =

∫ Tm

0

CP,(s)dT

T
+

∆Hfus

Tm
+

∫ Tb

Tm

CP,(`)dT

T
+

∆Hvap

Tb
+

∫ T

Tb

CP,(g)dT

T
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The standard entropy, S◦, indicates the absolute entropy of a compound in its standard
state. The standard entropy of reaction can be obtained in an analogous way as for the
enthalpy,

∆S =
∑

products

νiS
◦[i]−

∑
reactants

νiS
◦[i]

where the νi are the stoichiometric coefficients in the balanced chemical equation.

The entropy for each component in the reaction will have a temperature dependence given
by

S◦
i (T2) = S◦

i (T1) +

∫ T2

T1

CP,i(T )

T
dT

The temperature dependence of the standard reaction entropy is

∆S◦(T2) = ∆S◦(T1) +

∫ T2

T1

∆CP
T

dT

where ∆CP =
∑

i νiCP,i.This result is completely analogous to Kirchoff’s law for the tem-
perature dependence of the reaction enthalpy. If ∆CP is independent of temperature, it can
be factored out of the integral and this result simplifies to

∆S◦(T2) = ∆S◦(T1) + ∆CP ln

(
T2

T1

)

2.13 Free Energy and Spontaneity

The second law states that the overall entropy, ∆Ssys + ∆Ssurr, must increase for a process
to be spontaneous, but we would prefer a spontaneity criterion based only on properties of
the system. This can be done for two paths: (1) constant V, T and (2) constant P, T .

From the second law,

dSsys + dSsurr = dSsys +
dqsurr

Tsurr

≥ 0

For an isothermal path, T = Tsys = Tsurr and dqsurr = −dqsys, so

dSsys −
dqsys

T
≥ 0

The first term is for a reversible path (by the definition of the system entropy), but the
second is for any isothermal path, and these two terms will differ for irreversible paths.

For constant volume, dqsys = dU , so dSsys − dU/T ≥ 0 and rearranging gives

dU − TdS ≤ 0
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For constant pressure, dqsys = dH, so dSsys − dH/T ≥ 0 and rearranging gives

dH − TdS ≤ 0

We define two new state functions:

• The Helmholtz energy: ∆A = ∆U − T∆S (constant V )

• The Gibbs energy: ∆G = ∆H − T∆S (constant P )

For a process to be spontaneous, either

∆A ≤ 0 (constant V, T ) or ∆G ≤ 0 (constant P, T )

Since most chemical processes are carried out under constant P , rather than constant V , we
usually focus on ∆G and not ∆A.

Gibbs energy changes for a reaction can be obtained from the corresponding free energies of
formation (analogous to standard entropies and formation enthalpies)

∆G◦ =
∑

products

νi∆G
◦
f [i]−

∑
reactants

νi∆G
◦
f [i]

∆G◦ can also be obtained directly from the standard enthalpies (∆H◦) and entropies (∆S◦)
of reaction. Analogous statements can be made for the standard Helmholtz energy, ∆A◦.

Note that ∆G = 0 corresponds to the reversible process, where the system is in equilibrium.

∆G < 0 for spontaneity and all systems react to decrease their Gibbs energy. ∆H < 0 and
∆S > 0 both lower ∆G and are favourable for reaction.

The conditions for spontaneity can be summarized as:

∆H ∆S ∆G
− + − spontaneous at all T
− − ± spontaneous at low T
+ + ± spontaneous at high T
+ − + not spontaneous at any T

EX. Combustion of graphite

C(s,graphite) + O2(g) −→ CO2(g) ∆H < 0,∆S > 0→ spontaneous

EX. Melting of ice

H2O(s) −→ H2O(`) ∆H > 0,∆S > 0→ high T
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EX. Formation of ammonia (Haber process)

1

2
N2(g) +

3

2
H2(g) −→ NH3(g) ∆H < 0,∆S < 0→ low T

Note that ∆G does not have any connection to the reaction rate. A spontaneous reaction
can be slow (rusting of iron) or fast (burning of acetylene), but will eventually proceed given
a long enough time span, while a non-spontaneous reaction will never proceed.

2.14 Maximum Work

The Helmholtz energy has another physical interpretation beyond spontaneity – it can give
us the maximum work that can be done by the system. Recall the definition of the entropy:

dS =
dqrev

T
or integrating at constant T, T∆S = qrev

From the first law, ∆U = q + w so

∆U = T∆S + wrev

wrev = ∆U − T∆S = ∆A

and the maximum work occurs for the reversible path, so wmax = ∆A. This is the origin
of the term “free” energy. ∆A is the part of the internal energy change (∆U) not involved
in random thermal motion of the atoms or molecules (T∆S) and is consequently free to do
work.

An analogous interpretation exits for ∆G, which is the maximum additional non-expansion
work. Recall that PV work is done by the system (for a constant P, T process) to expand
the volume against the external pressure. The non-expansion work is any further work that
can be done by the system, such as electrical work. Partitioning the total reversible work
into these contributions,

wrev = −P∆V + wadd,max

where again the maximum additional work will be obtained for the reversible path.

From the definitions of the Gibbs energy and enthalpy,

dG = dH − TdS = dU + PdV − TdS

and at constant P, T

∆G = ∆U + P∆V − T∆S
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Substituting from the first law, ∆U = qrev + wrev and T∆S = qrev,

∆G = qrev + wrev + P∆V − qrev

wrev = −P∆V + ∆G

Comparing with the above result, wadd,max = ∆G and ∆G is the maximum additional non-
expansion work that can be done by the system. This is particularly useful in assessing
the maximum electrical work that can be produced by fuel cells and electrochemical cells
(batteries).
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Maxwell Relations

3.1 Total Derivatives

For a function of two variables, f(x, y), the slope in the x-direction is (∂f
∂x

)y, indicating the
partial derivative of f with respect to x, with y held constant. Similarly, the slope in the
y-direction is (∂f

∂y
)x. The total change in f when both x and y are changed to x + dx and

y + dy is a sum of the changes in each direction. This gives the total derivative:

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy (3.1)

A simple analogy is to consider a hill, where
you have a grid of streets.

When working with partial derivatives, two useful simplifications are:(
∂x

∂x

)
y

= 1 since this is the change in a variable with respect to itself(
∂y

∂x

)
y

= 0 there is no change in y since it is held constant

If we have

df =

(
∂y

∂z

)
x

dx

31
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for some function f , we can divide through by dx to get

df

dx
=

(
∂y

∂z

)
x

Alternatively, we could integrate both sides to find f(x)

f =

∫
df =

∫ (
∂y

∂z

)
x

dx

Next, we will demonstrate two useful properties of partial derivatives. First, starting from
the total derivative for x(y, z):

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz

Dividing through by dx:

1 =

(
∂x

∂y

)
z

dy

dx
+

(
∂x

∂z

)
y

dz

dx

Let z be held constant, to give:

1 =

(
∂x

∂y

)
z

(
∂y

∂x

)
z

+

(
∂x

∂z

)
y

(
∂z

∂x

)
z

but the last partial is zero and(
∂x

∂y

)
z

(
∂y

∂x

)
z

= 1 or

(
∂x

∂y

)
z

=

(
∂y

∂x

)−1

z

which is called the inverse property.

Returning to our total derivative for x(y, z):

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz

if we differentiate with respect to z with constant x,

0 =

(
∂x

∂y

)
z

(
∂y

∂z

)
x

+

(
∂x

∂z

)
y

and re-arranging, (
∂x

∂z

)
y

= −
(
∂x

∂y

)
z

(
∂y

∂z

)
x

which is called the permutation relation.
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3.2 Maxwell Relations and the Fundamental Equations

of Thermodynamics

Combining the first and second laws, dU = dqrev + dwrev and dqrev = TdS, along with the
reversible work, dwrev = −PdV gives

dU = TdS − PdV (3.2)

This is valid for all paths since it is composed entirely of state functions. This is often called
the fundamental equation of thermodynamics. It can be used along with the definitions of
dH, dA, and dG to give three analogous fundamental equations.

The definition of enthalpy is H = U + PV , so dH = dU + PdV + V dP . Substituting the
above expression for dU gives

dH = TdS + V dP (3.3)

The definition of the Helmholtz energy is A = U−TS, so dA = dU−TdS+SdT . Substituting
for dU gives

dA = −PdV − SdT (3.4)

The definition of the Gibbs energy is G = H −TS, so dG = dH −TdS−SdT . Substituting
for dH gives

dG = V dP − SdT (3.5)

These 4 equations can be used to generate 4 relations between the entropy and the indepen-
dent variables, P, V, T , called the Maxwell relations.

1. Write U = U(S, V ) and take the total derivative

dU =

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV

Comparing with the above result and equating coefficients,(
∂U

∂S

)
V

= T and

(
∂U

∂V

)
S

= −P

Also, since U is a state function, the order of derivatives commute, so[
∂

∂V

(
∂U

∂S

)
V

]
S

=

[
∂

∂S

(
∂U

∂V

)
S

]
V

and substituting gives (
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

(3.6)
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2. Write H = H(S, P ) and take the total derivative

dH =

(
∂H

∂S

)
P

dS +

(
∂H

∂P

)
S

dP

Comparing with the above result and equating coefficients,(
∂H

∂S

)
P

= T and

(
∂H

∂P

)
S

= V

Applying the state function condition that the derivatives commute,[
∂

∂P

(
∂H

∂S

)
P

]
S

=

[
∂

∂S

(
∂H

∂P

)
S

]
P

and substituting gives (
∂T

∂P

)
S

= −
(
∂V

∂S

)
P

(3.7)

3. Write A = A(V, T ) and take the total derivative

dA =

(
∂A

∂V

)
T

dV +

(
∂A

∂T

)
V

dT

Comparing with the above result and equating coefficients,(
∂A

∂V

)
T

= −P and

(
∂A

∂T

)
V

= −S

Applying the state function condition that the derivatives commute,[
∂

∂T

(
∂A

∂V

)
T

]
V

=

[
∂

∂V

(
∂A

∂T

)
V

]
T

and substituting gives (
∂P

∂T

)
V

=

(
∂S

∂V

)
T

(3.8)

4. Write G = G(P, T ) and take the total derivative

dG =

(
∂G

∂P

)
T

dP +

(
∂G

∂T

)
P

dT

Comparing with the above result and equating coefficients,(
∂G

∂P

)
T

= V and

(
∂G

∂T

)
P

= −S
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Applying the state function condition that the derivatives commute,[
∂

∂T

(
∂G

∂P

)
T

]
P

=

[
∂

∂P

(
∂G

∂T

)
P

]
T

and substituting gives (
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

(3.9)

3.3 Total Derivatives of U and H

We would like to have expressions that allow determination of ∆U and ∆H for any path in
terms of P, V, T and other easy-to-measure quantities.

For U = U(T, V ), the total derivative is

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV

but the first term here is CV so

dU = CV dT +

(
∂U

∂V

)
T

dV (3.10)

To evaluate U for non-ideal gases along anything but the isochoric path, we need an expres-
sion for

(
∂U
∂V

)
T

.

Similarly, for H = H(T, P ), the total derivative is

dH =

(
∂H

∂T

)
P

dT +

(
∂H

∂P

)
T

dP

but the first term here is CP so

dH = CPdT +

(
∂H

∂P

)
T

dP (3.11)

and we need an expression for
(
∂H
∂P

)
T

.(
∂U
∂V

)
T

is the change in energy of a gas with respect to volume at constant T and is related
to the strength of the intermolecular interactions.
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From the fundamental equation
dU = TdS − PdV

take the derivative with respect to V at constant T(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− P

Substituting the Maxwell relation gives(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P (3.12)

This can be evaluated given any equation of state for the gas.

For an ideal gas, (
∂U

∂V

)
T

= T
∂

∂T

(
nRT

V

)
− nRT

V
= 0

which is expected since there are no intermolecular interactions.

For a vdW gas,

P =
RT

V̄ − b
− a

V̄ 2
and

(
∂P

∂T

)
V

=
R

V̄ − b(
∂U

∂V

)
T

= T
R

V̄ − b
−
(

RT

V̄ − b
− a

V̄ 2

)
=

a

V̄ 2

(
∂H
∂P

)
T

is also related to the intermolecular interactions. From the fundamental equation

dH = TdS + V dP

take the derivative with respect to P at constant T(
∂H

∂P

)
T

= T

(
∂S

∂P

)
T

+ V

Substituting the Maxwell relation gives(
∂H

∂P

)
T

= −T
(
∂V

∂T

)
P

+ V (3.13)

which can again be evaluated for a given equation of state.

For an ideal gas, (
∂H

∂P

)
T

= −T ∂

∂T

(
nRT

P

)
− nRT

P
= 0

again since there are no intermolecular interactions. However, this partial cannot be evalu-
ated directly for a vdW gas, given the cubic form of the equation of state.
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3.4 Relation between CP and CV

The ideal-gas result C̄P = C̄V +R can be derived using total derivatives

dU = CV dT +

(
∂U

∂V

)
T

dV

and for a constant-pressure process

dU = q + w = CPdT − PdV

Equating these expressions,

CPdT = CV dT +

[
P +

(
∂U

∂V

)
T

]
dV

Dividing by dT , and recalling the P is constant,

CP = CV +

[
P +

(
∂U

∂V

)
T

](
∂V

∂T

)
P

so the difference between CP and CV is related to the work per unit increase in T and the
energy required to overcome intermolecular interactions and pull the molecules apart.

For an ideal gas, there are no intermolecular interactions, so(
∂U

∂V

)
T

= 0

also, (
∂V

∂T

)
P

=
nR

P

and substituting these results gives

CP = CV + nR

so the relation for the molar heat capacities is C̄P = C̄V +R.

3.5 Thermal Expansion and Compressibility

In addition to using an equation of state, we would also like to have expressions for
(
∂U
∂V

)
T

and
(
∂H
∂P

)
T

in terms of two easily measured materials properties, α and κ.
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The coefficient of thermal expansion, α, is

α =
1

V

(
∂V

∂T

)
P

(3.14)

and describes the change in volume of a material with temperature.

The coefficient of compressibility, κ, is

κ = − 1

V

(
∂V

∂P

)
T

(3.15)

and describes the change in volume of a material with pressure.

Thus, (
∂H

∂P

)
T

= −T (V α) + V = V (1− αT )

For the partial involving U , we need to write
(
∂P
∂T

)
V

in terms of α and κ. Using the permu-
tation relation: (

∂x

∂z

)
y

= −
(
∂x

∂y

)
z

(
∂y

∂z

)
x

with x = P , y = V , z = T , this means(
∂P

∂T

)
V

= −
(
∂P

∂V

)
T

(
∂V

∂T

)
P

=
α

κ

and substituting gives (
∂U

∂V

)
T

= T
α

κ
− P

3.6 Joule-Thompson Cooling

The Joule-Thompson coefficient,

µJT =

(
∂T

∂P

)
H

is useful in refrigeration, were expansion of a gas is used for cooling. It describes the change
in temperature of a material with pressure for adiabatic processes, where work is done to
push a stream of gas through a small valve into a region of lower pressure, causing expansion.
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The particular experimental set-up is such that the net work is w = PfVf −PiVi. Also, since
the process is adiabatic, q = 0 and ∆U = w, so

∆H = ∆U + ∆(PV ) = w − w = 0

and the enthalpy is constant.

To evaluate µJT, multiply by CP ,

CPµJT =

(
∂H

∂T

)
P

(
∂T

∂P

)
H

=

(
∂H

∂P

)
T

Recall that
(
∂H
∂P

)
T

is related to the intermolecular interaction strength and is zero for ideal
gases.

For real gases, Joule-Thompson expansion usually, but not always, decreases the tempera-
ture. To show this, recall (

∂H

∂P

)
T

= −T
(
∂V

∂T

)
P

+ V

and consider the compressibility for a vdW gas in the low-pressure limit:

Z =
PV̄

RT
≈ 1 +

(
b− a

RT

) P

RT

rearranging,

V̄ =
RT

P
+ b− a

RT

and differentiating, (
∂V̄

∂T

)
P

=
R

P
+

a

RT 2

For one mole of gas,

CPµJT = T

(
∂V̄

∂T

)
P

− V̄

and substituting,

CPµJT = T

(
R

P
+

a

RT 2

)
−
(
RT

P
+ b− a

RT

)
=

2a

RT
− b

µJT =
1

CP

(
2a

RT
− b
)
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µJT > 0 when the attractive “a” term dominates. As the gas expands, it has to overcome
intermolecular attraction, which increases its potential energy, lowering the kinetic energy
of the gas.

µJT < 0 when the repulsive “b” term dominates. As the gas expands, it experiences less
non-bonded repulsion, lowering its potential energy, and increasing its kinetic energy.

Gases can only be used in refrigeration if µJT > 0 (i.e. T decreases on expansion). In practise,
T must be below an inversion temperature, Tinv, analogous to the Boyle temperature, TB,

2a

RTinv

− b = 0 ⇒ Tinv =
2a

bR
= 2TB

to give a positive JT coefficient. At room temperature, only 3 gases with very weak inter-
molecular interactions (H2, He, and Ne) have µJT < 0.

3.7 Recap – Calculation of ∆U , ∆H, and ∆S

In practical calculations to obtain ∆U and ∆H for non-ideal gases, start from the pair of
equations

dU = CV dT +

(
∂U

∂V

)
T

dV

dH = CPdT +

(
∂H

∂P

)
T

dP

where the first terms on the RHS are for the ideal gas, and the second terms are correction
terms to account for the intermolecular interactions.

The two partials in the correction terms may be evaluated using(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P(
∂H

∂P

)
T

= −T
(
∂V

∂T

)
P

+ V



3.7. Recap – Calculation of ∆U , ∆H, and ∆S 41

given some equation of state.

To evaluate
(
∂P
∂T

)
V

, we need P = P (V, T ), which is easily expressed for the vdW equation of
state and gives (

∂U

∂V

)
T

=
an2

V 2

However, to evaluate
(
∂V
∂T

)
P

, we need V = V (P, T ), which cannot be written directly for the
vdW equation given its cubic form. Alternatively, we can obtain ∆H from ∆U as

∆H = ∆U + ∆(PV )

where ∆(PV ) = PfVf −PiVi may be evaluated using the equation of state. We can also use
the approximation

V̄ ≈ RT

P
+
(
b− a

RT

)
obtained from the expansion of the compressibility factor, Z, in the low-pressure limit.

To obtain ∆S for isothermal processes, use the last two Maxwell relations, depending on
which quantity (V or P ) is known for the initial and final states.(

∂S

∂V

)
T

=

(
∂P

∂T

)
V(

∂S

∂P

)
T

= −
(
∂V

∂T

)
P

⇒

⇒

dS =

(
∂P

∂T

)
V

dV

dS = −
(
∂V

∂T

)
P

dP

As above, we need to evaluate either
(
∂P
∂T

)
V

or
(
∂V
∂T

)
P

using an equation of state.

∆U , ∆H, or ∆S may then be obtained from the expressions for dU , dH, or dS by integrating
the differential equation from the initial to final state.

EX. for the vdW gas, (
∂U

∂V

)
T

=
an2

V 2

and substituting this into the expression for dU ,

dU = CV dT +
an2

V 2
dV

∆U = CV ∆T + an2

∫ f

i

1

V 2
dV
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In some cases, an equation of state is not known, but instead we have access to experimental
measurements of

thermal expansion, α =
1

V

(
∂V

∂T

)
P

compressibility, κ = − 1

V

(
∂V

∂P

)
T

These definitions can be manipulated to give(
∂V

∂T

)
P

= αV(
∂P

∂T

)
V

=
α

κ

which can be used in the Maxwell relations to evaluate ∆S, or in the correction terms for
∆U and ∆H.

Lastly, κ can be used to obtain volumes given pressures, or vice versa, for isothermal pro-
cesses:

κ = − 1

V

(
∂V

∂P

)
T

−κdP =
1

V
dV

and integrating,

ln

(
Vf
Vi

)
= −κ∆P

Vf = Vie
−κ∆P



Chapter 4

Chemical and Phase Equilibria

4.1 The Chemical Potential

We have not yet explicitly considered changes in system composition that occur during
reactions. The chemical potential, µ, is defined as the change in Gibbs energy with respect
to the amount of a particular substance

µi =

(
∂G

∂ni

)
T,P

where ni is the number of moles of substance i. For a pure substance, µ is the Gibbs energy
per mole, Ḡ. For systems with varying composition, the Gibbs energy definition is expanded
to include dependence on µ and n.

dG = −SdT + V dP +
∑
i

µidni

4.2 Mixing of Gases

In the derivation of the Maxwell relations, we found(
∂G

∂P

)
T

= V

At constant T , dG = V dP , so integrating gives

∆G =

∫ Pf

Pi

V (P, T )dP (isothermal)

43
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For solids and liquids, the compressibility is negligible, so ∆G = V∆P , but for a gas, an
equation of state is needed to integrate V (P, T ).

For an ideal gas,

∆G = nRT

∫ f

i

dP

P
= nRT ln

(
Pf
Pi

)
Taking Pi = P ◦, which is the standard state of 1 atm,

G(P ) = G◦ + nRT lnP

Then, the chemical potential is
µ = µ◦ +RT lnP

and for a gas mixture, the chemical potentials will depend on the partial pressures of the
components

µi = µ◦
i +RT lnPi

The partial pressure is determined from the mole fraction, Pi = xiP , so the chemical potential
for gas i in the mixture is

µi,mix = µ◦
i +RT lnP +RT lnxi = µi,pure +RT lnxi

Since xi < 1, the last term is negative and the chemical potential for an ideal gas in a mixture
is always less than for a pure ideal gas, µi,mix < µi,pure, under the same total pressure.

The Gibbs energy of mixing is

∆Gmix =
∑
i

niµi,mix −
∑
i

niµi,pure

= RT
∑
i

ni lnxi

but ni = xin, so

∆Gmix = nRT
∑
i

xi lnxi

and ∆Gmix < 0. For an ideal gas, there are no intermolecular interactions, so ∆Hmix = 0 and
mixing is driven entirely by an increase in entropy. However, for real gases, the difference in
intermolecular interactions can be either favourable or unfavourable.

4.3 Gibbs Energy and Chemical Equilibria

For a general chemical reaction,

∆G =
∑
i

νiµi
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where the νi’s are the signed stoichiometric coefficients in the balanced chemical equation
(+ for products, − for reactants).

If all reactants and products are ideal gases, then

∆G =
∑
i

νi (µ
◦
i +RT lnPi)

and ∆G◦ =
∑

i νiµ
◦
i , so collecting all the terms at standard state,

∆G = ∆G◦ +
∑
i

νiRT lnPi

Combining the ln terms, the sum can be converted to a product

∆G = ∆G◦ +RT ln

(∏
i

P νi
i

)
where the

∏
notation indicates a product (analogous to

∑
for a sum).

For the example reaction
aA+ bB ⇀↽ cC + dD

this means

∆G = ∆G◦ +RT ln
P c
CP

d
D

P a
AP

b
B

The argument of the ln term is defined as the pressure-based reaction quotient, QP =
∏

i P
νi
i ,

such that
∆G = ∆G◦ +RT lnQP (4.1)

The difference in ∆G relative to the standard state is determined by the composition of the
reaction mixture.

If the system is composed of mostly reactants, QP << 1 so lnQP will be negative and lower
∆G. If the system is composed of mostly products, lnQP will be positive and raise ∆G.

When equilibrium is reached, ∆G = 0 so

∆G◦ = −RT ln

(∏
i

P νi
i,eq

)
This particular reaction quotient involving the equilibrium partial pressures is defined as the
pressure-based equilibrium constant, KP =

∏
i P

νi
i,eq

∆G◦ = −RT lnKP (4.2)
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This result means that ∆G◦ can be determined from the equilibrium composition of the
system.

Also, the value of KP can be determined as a function of T given the thermodynamic
functions ∆H◦(T ) and ∆S◦(T ) since

−RT lnKP = ∆H◦ − T∆S◦ = ∆G◦

lnKP = −∆H◦

RT
+

∆S◦

R
and both ∆H◦ and ∆S◦ can be evaluated at a range of temperatures from heat capacity
data.

The dependence of KP on T can also be determined starting from lnKP = −∆G◦/RT ,

∂

∂T
lnKP =

∂

∂T

(
−∆G◦

RT

)
=

∂

∂T

(
−∆H◦ − T∆S◦

RT

)
=

∂

∂T

(
−∆H◦

RT
+

∆S◦

R

)
=

∆H◦

RT 2

Integrating from T0 to T ,

lnKP = lnKP,0 −
∆H◦

R

(
1

T
− 1

T0

)
(4.3)

If the reaction is exothermic, ∆H◦ < 0 and KP decreases with increasing T , favouring the
reactants. If the reaction is endothermic, ∆H◦ > 0 and KP increases with T , favouring the
products. This is one aspect of Le Châtelier’s Principle.

For heterogeneous equilibria, with one or more liquids or solids, KP involves only the gases.
Recall that ∆G =

∑
i νiµi and µi = µ◦

i +RT lnPi, but for liquids and solids, µ is insensitive
to pressure and µi = µ◦

i .

Equilibrium constants are often reported using concentration or mole fraction instead of
pressures. The concentration is ci = ni/V and for an ideal gas, Pi = ciRT , so

KP = Kc(RT )∆ν

where ∆ν =
∑

i νi is the difference in stoichiometric coefficients. For the mole fraction,
Pi = xiP , so

KP = KxP
∆ν

For heterogeneous equilibria, consider only gases in evaluation of ∆ν.
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4.4 Phase Changes of Pure Substances

The chemical potential allows us to derive the shape of the phase diagram for a pure sub-
stance. For a single-component substance, µ = Ḡ and

dµ = −S̄dT + V̄ dP

and comparing this with the total derivative for µ(T, P ) gives(
∂µ

∂T

)
P

= −S̄ and

(
∂µ

∂P

)
T

= −V̄

Because S is always positive,
(
∂µ
∂T

)
P

is always negative. Also, S̄gas >> S̄liq > S̄solid and,
assuming the entropy varies slowly with T , we can sketch the following:

At a given T , the most-stable state has the
lowest µ.

T < Tm, µs is lowest, solid most stable

Tm < T < Tb, µ` is lowest, liquid most stable.

T > Tb, µg is lowest, gas most stable.

At Tm, µs = µ` and the solid and liquid phases are in equilibrium.

At Tb, µ` = µg and the liquid and gas phases are in equilibrium.

To obtain the phase diagram, we need to derive an equation relating T and P for the three
phase equilibria. For equilibrium between phases α and β, µα = µβ, so

−S̄αdT + V̄αdP = −S̄βdT + V̄βdP

(V̄α − V̄β)dP = (S̄α − S̄β)dT

dP

dT
=

∆S

∆V

which is one form of the Clapeyron equation. Also, for phase equilibrium, ∆S = ∆H/T so

dP

dT
=

∆H

T∆V

which is the other form of the Clapeyron equation. This is applicable to heats and volumes
of fusion, vapourization, and sublimation.
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For fusion, integrating gives ∫ P

P0

dP =

∫ T

T0

∆Hfus

∆Vfus

dT

T

and ∆H and ∆V are constants, so

P = P0 +
∆Hfus

∆Vfus

ln

(
T

T0

)
(fusion) (4.4)

The slope of the s ⇀↽ ` co-existence line is very steep since ∆V is quite small, although it
can be either positive (most materials) or negative (ice is less dense than water).

For the ` ⇀↽ g and s ⇀↽ g equilibria, the molar volume of a gas is much greater than for a
solid or liquid, so ∆V̄ ≈ ¯Vgas = RT/P (ideal gas).∫ P

P0

dP

P
=

∫ T

T0

∆Hfus

RT 2
dT

and integrating gives

ln

(
P

P0

)
= −∆H

R

(
1

T
− 1

T0

)
(vapourization or sublimation) (4.5)

∆Hvap and ∆Hsub are always positive, so P increases
with T .

∆Hsub > ∆Hvap so the slope of the solid-gas line is
slightly larger than the liquid-gas line.

4.5 Colligative Properties

These are properties that depend on the concentration of a solute, but not on its identity.
The T and P conditions for phase equilibria are colligative properties and are affected by
solutes in the liquid phase. We will consider 4 properties: vapour pressure lowering, boiling
point elevation, freezing point depression, and osmotic pressure.

For an ideal solution, the solute is not volatile and does not contribute to the vapour pressure.
As solute is added, the vapour pressure is

P = P ◦xsolvent = P ◦(1− xsolute)
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where P ◦ is the vapour pressure of the pure liquid. The solute lowers the vapour pressure
and this is Raoult’s law.

The chemical potential of the solvent also decreases due to the solute (entropy of mixing).
For a pure liquid in equilibrium with its vapour,

µ◦
` = µ◦

g +RT lnP ◦

but for a solution this is
µ` = µ◦

g +RT ln[P ◦(1− xsolute)]

Subtracting gives
µ` − µ◦

` = RT ln[P ◦(1− xsolute)]

Since ln(1− x) < 0, the chemical potential of
the solution is lower than for the pure liquid.

The shift in µ` explains the boiling point
increase and freezing point decrease.

To obtain the boiling point elevation, we have µ` = µ◦
g for this equilibrium. Then,

∆Gvap = µ◦
g − µ◦

` = µ` − µ◦
` = RT ln(1− xsolute)

Substituting for ∆G,

ln(1− xsolute) =
∆Hvap

RT
− ∆Svap

R
and rearranging,

∆Svap

R
=

∆Hvap

RT
− ln(1− xsolute)

As ∆Svap/R is constant, we can equate the results for the pure liquid (x = 0) and the
solution,

∆Hvap

RT0

− ln(1) =
∆Hvap

RT
− ln(1− x)

and solving,

ln(1− x) =
∆Hvap

R

(
1

T
− 1

T0

)
(4.6)

This can also be rearranged to give

1

T
− 1

T0

=
R ln(1− x)

∆Hvap
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If the solute is dilute, x << 1, so ln(1 − x) ≈ −x. Also, the temperature change will be
small, so

1

T
− 1

T0

=
T0 − T
T0T

≈ −T − T0

T 2
0

and substituting gives the dilute-solute approximation

∆Tb =
RT 2

0

∆Hvap

xsolute

Similarly, to obtain the freezing point depression, we have µ` = µ◦
s for this equilibrium.

Then,
∆Gfus = µ◦

` − µ◦
s = µ◦

` − µ` = −RT ln(1− xsolute)

Substituting for ∆G,

ln(1− xsolute) = −∆Hfus

RT
+

∆Sfus

R
and rearranging,

∆Sfus

R
=

∆Hfus

RT
+ ln(1− xsolute)

As ∆Sfus/R is constant, we can equate the results for the pure liquid (x = 0) and the
solution,

∆Hfus

RT0

+ ln(1) =
∆Hfus

RT
+ ln(1− x)

and solving,

ln(1− x) = −∆Hfus

R

(
1

T
− 1

T0

)
(4.7)

This can also be rearranged to give

1

T
− 1

T0

= −R ln(1− x)

∆Hfus

and if the solute is dilute, it leads to the following approximation

∆Tf = − RT 2
0

∆Hfus

xsolute

The formula for ∆Tb and ∆Tf are often written in terms of the molality of the solute,
(nsolute/msolvent), rather than the mole fraction, since it is easier to measure the mass of the
solvent.

Measurements of ∆Tb and ∆Tf can be used to determine the molar mass of an unknown
solute. The boiling-point elevation and freezing-point depression formulae can also be used
to predict co-existence curves for 2-component phase diagrams.
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Osmotic pressure refers to the tendency of a solution to take on additional solvent through
osmosis (diffusion through a membrane).

For two liquids separated by a membrane, the chemical potential of the solution is lower
than for the pure liquid and these must equalize to reach equilibrium.

This can be done if the pressure on the pure liquid is lowered by diffusion of some liquid
through the membrane, building up a pressure head on the solution side. The additional
pressure on the solution required to equalize the chemical potential, Π, is called the osmotic
pressure.

For this equilibrium,

µ`(P + Π) +RT ln(1− xsolute) = µ◦
`(P )

Recall that ∆µ =
∫
V̄ dP = V̄∆P when the molar volume is independent of P , so

∆µ = µ`(P + Π)− µ◦
`(P ) = V̄∆P = V̄Π

and substituting

V̄Π = RT ln(1− x) (4.8)

If the solution is dilute, ln(1 − x) ≈ −x so Π = RTx/V̄ , but V̄ = V/n and x = nsolute/n.
This gives

Π = RT
nsolute

V
= RTc

where c is the solute concentration.

“Reverse osmosis” is often used to purify water (and other solvents). By applying an external
pressure to the solution side, pure solvent can be driven through the membrane.

4.6 Partial Pressures in Two-Component Mixtures

Consider a mixture of two components where there is an equilibrium between the gas and
liquid phases. The mole fractions of the two components are xA and xB in the liquid phase
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and yA and yB in the gas phase. We aim to obtain partial pressures of each gas as a function
of composition.

To obtain PT as a function of xA, start from the total pressure,

PT = PA + PB

and use Raoult’s law of vapour-pressure lowering

PA = P ◦
A(1− xB) = P ◦

AxA or xA =
PA
P ◦
A

to obtain
PT = xAP

◦
A + xBP

◦
B = xAP

◦
A + (1− xA)P ◦

B

and rearranging

PT = P ◦
B + (P ◦

A − P ◦
B)xA (4.9)

so the total pressure is a linear interpolation between P ◦
A and P ◦

B.

For PT as a function of yA, start from the definition of the partial pressure, PA = yAPT ,

PT =
PA
yA

=
xAP

◦
A

yA

but from the result above

xA =
PT − P ◦

B

P ◦
A − P ◦

B

Substituting this

PT =
P ◦
A

yA

(
PT − P ◦

B

P ◦
A − P ◦

B

)
Solving for PT gives

PT =
P ◦
AP

◦
B

P ◦
A + (P ◦

B − P ◦
A)yA

(4.10)

which has a hyperbolic dependence on yA.

At high pressure, there is a single liquid phase and,
at low pressure, there is a single gas phase.

In the intermediate region, there is an equilibrium
between the liquid solution and gas mixture.

At a given pressure, the gas phase is enriched in
the more volatile component (i.e. yA > xA).
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4.7 Two-Component Phase Diagrams

These are typically given in terms of composition and temperature since pressure changes
have very little effect on solid or liquid phases. We will consider liquid-gas phase diagrams
first.

At low temperature, there is a single liquid phase
and, at high temperature, there is a single gas
phase.

In the intermediate region, there is an equilibrium
between the liquid solution and the gas mixture.

In the two-phase region, the liquid and gas phases
will have different composition depending on the
relative boiling points.

The component with lower Tb will be enriched in the gas and the solution will be enriched
in the component with higher Tb.

The overall composition is given by XA and XB, while the compositions of the liquid and
gas phases are (xA, xB) and (yA, yB), respectively.

Consider heating a system with composition XA so that the temperature changes along a
line of constant composition, called an isopleth.

The liquid will have xA = XA, xB = 1 −XA until
the isopleth crosses the evaporation curve at T1.

Then, a gas phase starts to form, with initial com-
position yA, where a tie line (horizontal line) at T1

crosses the condensation curve.

As heating continues, the liquid and gas composi-
tions change according to the evaporation and con-
densation curves, respectively.

When the isopleth crosses the condensation curve at T3, all the liquid has evaporated and
there is now a single gas phase with composition XA.

The use of a tie line to determine the two phase compositions is called the Lever rule; the
relative amounts of each phase are given by

Xliquid =
XA − yA
xA − yA

and Xgas =
xA −XA

xA − yA
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Fractional distillation makes use of the difference in composition between the liquid and gas
phases by repeatedly condensing, separating, and boiling the vapour, which is enriched in
the more volatile component

In some cases, the intermolecular interactions prohibit separation by distillation. A minimum
in the condensation/evaporation curves will occur if the A−B interactions are significantly
weaker than the A− A and B − B interactions, so that the solution is less stable and boils
more easily than the pure components.

Then, the composition does not change during boil-
ing and the mixture is called an azeotrope (Greek:
to boil unchanged).

At Xazeotrope, the liquid and gas phases have the
same composition, so the mixture cannot be sepa-
rated by distillation.

An ethanol/water mixture is one example, for Xazeotrope = 0.89.

Azeotropes can also form when there is a maximum in the evaporation/condensation curves
due to particularly favourable A−B interactions. The solution is more stable and condenses
more readily than the pure components.

In cases where the liquids do not mix over the entire temperature and composition range,
typical phase diagrams are:

In the 2-phase liquid region, at T1, one liquid phase
will have composition xa and the other xb.

The two components form a single solution phase
for all compositions at T > T2, called the upper
consolute temperature.
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If there is no upper consolute temperature, then
there are two distinct ` ⇀↽ g co-existence regions
depending on the liquid phase (`1 or `2).

The point E is called the eutectic point, at which
the 3 phases (g, `1, `2) are in equilibrium.

At this one composition, the liquid phase will be a
mixture of `1 and `2 throughout evaporation.

For solid-liquid phase diagrams, there are 5 typical cases to consider, depending on whether
the components form solid solutions or compounds.

(i) If A and B form a solid solution over the entire composition
range, the phase diagram has the same form as the liquid-gas
case.

(ii) If A and B are slightly miscible as solids, there
will be a mixture of two solid phases, s1 and s2.

The phase diagram will resemble the liquid-gas case
with no upper consolute temperature.

(iii) A and B are completely immiscible and do not
form any solid solution.

For the shown isopleth, component A will initially
precipitate from the liquid until TE is reached. At
TE, component B will also begin to precipitate and
will continue until all the liquid has frozen. Below
TE, there is a mechanical mixture of the two solids.
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(iv) A and B form a compound, C, which melts
congruently (molecules in the solid and liquid are
the same).

The phase diagram resembles two case (iii) plots
side-by-side.

(v) A and B form a compound, C, which melts
incongruently (decomposes on melting). These are
called peritectic compounds.

For the shown isopleth, when the peritectic com-
pound is heated to TP , it decomposes into solid B
and a liquid solution, containing A and B.

In all cases, the phase diagrams can be constructed from cooling curves (temperature vs.
time) according to the points where the curve changes slope.

The temperature will be constant for phase change of a pure compound or azeotrope, eutectic
processes, and peritectic processes.

The cooling curve will change slope at the onset of precipitation of a pure solid solution from
a liquid solution, condensation of a liquid solution from a gas mixture, and separation of a
liquid solution into two distinct liquid phases.

For an example isopleth, the cooling curve is:

The entire phase diagram can be constructed from cooling curves for a range of compositions
by plotting the positions of the temperature breaks.


