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Chapter 1

Atomic and Molecular Orbitals

1.1 Review and Motivation

The fundamental equation on which quantum chemistry is based is the time-independent
Schrödinger equation:

Ĥψ = Eψ

where Ĥ is the Hamiltonian (or energy operator), ψ is the wavefunction, and E is the energy.

This is an eigenvalue problem, as in matrix algebra. The wavefunction ψ(r1, r2, . . . , rN) is a
function of the positions of all N electrons in an atom or molecule.

The electron density

ρ(r) =

∫
· · ·
∫
ψ∗ψdr2 · · · drN

describes the distribution of electrons in a molecule in 3D.

The Hamiltonian is a sum of the kinetic (T̂ ) and potential (V̂ ) energies of the electrons in
the system

Ĥ = T̂ + V̂

V̂ = electron-nuclear attraction + electron-electron repulsion

We want to solve the SE for molecules to determine their structure, energies, thermochem-
istry, reaction kinetics, vibrational spectra, absorption spectra, etc.

However, the e−-e− term is not separable into functions of the individual electron coordinates
(because of the 1/rij term), so the SE cannot be solved analytically for many-e− systems.
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6 Chapter 1. Atomic and Molecular Orbitals

As a first approximation, we construct a set of molecular orbitals (φi’s) from linear combi-
nations of atomic orbitals (χk’s)

φi =
∑
k

ckχk

The MOs are the solutions to

Ĥφi = εiφi

where the εi’s are the molecular-orbital energies.

1.2 Atomic Orbitals

AOs are the solutions to the SE for the hydrogen atom.

The potential is V = −Z
r

in atomic units.

The general solution is a product of radial and angular terms:

ψn`m`
= Rn`(r)Y`m`

(θ, φ)

n is the principle quantum number, ` and m` are angular momentum quantum numbers
(` =total, m` = z-component), and the Y`,m`

’s are the spherical harmonics.

The energies are En = − Z2

2n2 in atomic units (Hartree).

Recall that n = 1, 2, 3, . . ., ` = 0, 1, . . . , n− 1, and m` = 0,±1, . . . ,±`.

The general pattern of energy levels is:

` = 0 ` = 1 ` = 2 ` = 3
n = 4 — 4s — 4p — 4d — 4f 7 f orbitals, m` = 0,±1,±2,±3
n = 3 — 3s — 3p — 3d 5 d orbitals, m` = 0,±1,±2
n = 2 — 2s — 2p 3 p orbitals, m` = 0,±1
n = 1 — 1s 1 s orbital, m` = 0

Complete H-atom wavefunctions for n = 1, 2 are:
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ψ100 =
1√
π

(
Z

a◦

)3/2

e−
Zr
a◦

ψ200 =
1√
32π

(
Z

a◦

)3/2(
2− Zr

a◦

)
e−

Zr
2a◦

ψ210 =
1√
32π

(
Z

a◦

)3/2
Zr

a◦
e−

Zr
2a◦ cos θ

ψ21±1 =
1√
64π

(
Z

a◦

)3/2
Zr

a◦
e−

Zr
2a◦ sin θe±iφ

These are complex valued – need to obtain real linear combinations:

ψ2px =
1√
2

(ψ211 + ψ21−1) =
1√
32π

(
Z

a◦

)3/2
Zr

a◦
e−

Zr
2a◦ sin θ cosφ

ψ2py =
i√
2

(ψ211 − ψ21−1) =
1√
32π

(
Z

a◦

)3/2
Zr

a◦
e−

Zr
2a◦ sin θ sinφ

Additionally, these spatial orbitals are all doubly degenerate – α or β spin.

1.3 The Pauli Exclusion Principle

Before we can consider multi-electron systems, there is one further constraint we must impose
on the wavefunction that arises from the indistinguishability of identical particles.

For a system of n identical particles, the wavefunction depends on their positions and spins.
We will define the vector q = (x, y, z,ms) to give the spatial and spin coordinates. The
wavefunction can then be written as

ψ = ψ(q1,q2, . . . ,qn)

We also define the permutation operator, Pij that interchanges the coordinates (both space
and spin) of particles i and j so that

P12ψ(q1,q2, . . . ,qn) = ψ(q2,q1, . . . ,qn)

Since the labeling is arbitrary, this permutation cannot affect the physical state of the system.

Two wavefunctions that correspond to the same state must be identical, to within a constant
phase factor

Pijψ = cψ
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so ψ is an eigenfunction of Pij. Also, application of Pij twice recovers the original wavefunc-
tion, so

P2
ijψ = ψ

However,
P2
ijψ = Pij(cψ) = c2ψ

Equating these two results means that c2 = 1, so c = ±1. Therefore, the wavefunction must
be either symmetric on antisymmetric with respect to interchange of any two particles.

To illustrate the consequences of this constraint, let’s consider two non-interacting particles
in a 1D box of width a. The Schrödinger equation is

− ~2

2m

(
∂2

∂x21
+

∂2

∂x22

)
ψ = Eψ

and the solution is a product of two particle in a box wavefunctions

ψmn(x1, x2) = ψm(x1)ψn(x2)

Symmetric and antisymmetric wavefunctions can be constructed from the individual particle
in a box wavefunctions for each particle and are

ψS
mn =

1√
2

[ψm(x1)ψn(x2) + ψm(x2)ψn(x1)]

ψA
mn =

1√
2

[ψm(x1)ψn(x2)− ψm(x2)ψn(x1)]

For the cases of ψS
12 and ψA

12, the resulting probability densities are

ψS
12: high probability of finding both

particles at the same point.
ψA
12: zero probability of finding both

particles at the same point.
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Experiment shows that there are two types of fundamental particles, with one type having
each of the behaviours shown above:

• Fermions - antisymmetric with respect to interchange

• Bosons - symmetric with respect to interchange

and electrons are Fermions.

The Pauli Exclusion Principle states that the wavefunction of a system of electrons must
be antisymmetric with respect to interchange of any two electrons.

An important consequence of this principle can be seen by considering the value of a wave-
function when two electrons have the same space and spin coordinates (i.e. qi = qj). Then,

ψ = ψ(q1,q2, . . . ,qi,qi, . . . ,qn)

but ψ must be antisymmetric with respect to interchange of i and j. This leads to ψ = −ψ,
and this can only be true for ψ = 0.

Therefore, another statement of the Pauli Exclusion Principle is that two electrons with
the same spin have zero probability of being found at the same point in space.

1.4 The Laplacian Operator

∇2 is the Laplacian, or second-derivative, operator. It appears in determination of the kinetic
energy, T̂ = − 1

2m
∇2. In one dimension, the Laplacian is

∇2 =
d2

dx2

and in three dimensions,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

In spherical polar coordinates,

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
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1.5 The Helium Atom

The He-atom Hamiltonian, in atomic units, is

H = −1

2
∇2

1 −
1

2
∇2

2 −
2

r1
− 2

r2
+

1

r12

The first two terms are the kinetic energies of electrons 1
and 2, respectively. The next two terms are the attractive
electrostatic interactions of electrons 1 and 2 with the
nucleus (charge Z = 2). The last term is the repulsive
electrostatic interaction between the two electrons.

e
1

e
2

r
1

r
2

r
12

This resembles a repetition of the H-atom problem for electrons 1 and 2, except that the last
term

1

r12
=

1

|r1 − r2|
is not separable into functions of the individual electron coordinates. This means that the
Schrödinger equation cannot be solved analytically for this system and approximate methods
must be used. This is true for all atoms or molecules with two or more electrons.

Let us write the spatial wavefunction as the product of the hydrogen-like orbitals. For the
ground state, this is

ψ◦ = ψ1s(r1)ψ1s(r2) = 1s(1)1s(2)

We must also take spin into account (since there is more than one electron) and multiply
this spatial wavefunction by a spin eigenfunction.

We will use the notation α(i) or β(i) to indicate a state in which electron i is spin up or spin
down, respectively.

There are four normalized spin eigenfunctions that satisfy the requirement of being either
symmetric or antisymmetric with respect to exchange:

symmetric, “triplet” spin functions


α(1)α(2)
β(1)β(2)
1√
2

[
α(1)β(2) + α(2)β(1)

]
antisymmetric, “singlet” spin function

{
1√
2

[
α(1)β(2)− α(2)β(1)

]
According to the Pauli principle, the total wavefunction must be antisymmetric with respect
to exchange. The spatial part is 1s(1)1s(2), which is symmetric. Therefore, the spin part
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must be antisymmetric and

ψ◦ = 1s(1)1s(2)
1√
2

[
α(1)β(2)− α(2)β(1)

]

The lowest-lying excited states for He have the electron configu-
ration 1s12s1. The spatial parts of these wavefunctions are

ψsinglet =
1√
2

[
1s(1)2s(2) + 1s(2)2s(1)

]
ψtriplet =

1√
2

[
1s(1)2s(2)− 1s(2)2s(1)

]
where ψsinglet would be paired with the singlet spin function and
ψtriplet could be paired with any of the three triplet spin functions.

2s ↓

1s ↑

singlet

2s ↑

1s ↑

triplet

1.6 Many-Electron Atoms

In general, for a N -electron atom, the Hamiltonian is

H =
N∑
i=1

(
−1

2
∇2
i −

Z

ri

)
+
∑
i<j

1

rij

The wavefunction is approximated as a Slater determinant, with N electrons in N orbitals.

ψ =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) · · · φN(1)
φ1(2) φ2(2) · · · φN(2)

...
...

. . .
...

φ1(N) φ2(N) · · · φN(N)

∣∣∣∣∣∣∣∣∣
abbreviated as ψ = 1√

N !

∣∣φ1 φ2 · · · φN
∣∣

The 1√
N !

factor assures normalization. Properties of determinants cause the wavefunction

to be antisymmetric (recall that the sign of a determinant flips if pairs of columns or rows
change order) in accordance with the Pauli exclusion principle.

φ1, φ2, . . . , φN are spin orbitals, the order of which is chosen according to the AUFBAU
(filling) principle.

EX. He atom
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1s ↑↓ ψ =
1√
2

∣∣∣∣1sα(1) 1sβ(1)
1sα(2) 1sβ(2)

∣∣∣∣ =
1√
2

∣∣1sα 1sβ
∣∣

EX. Li atom

2s ↑
1s ↑↓ ψ =

1√
6

∣∣1sα 1sβ 2sα
∣∣

EX. C atom

2p ↑ ↑
2s ↑↓
1s ↑↓

ψ =
1√
6!

∣∣1sα 1sβ 2sα 2sβ 2pxα 2pyα
∣∣

Atomic states are described by their multiplicity (2S + 1) (where S is the total spin), which
is the number of unpaired electrons, plus 1. In atoms with all paired electrons, like He, the
multiplicity is 1 - a singlet. Atoms with one unpaired electron, like Li are doublets. The
ground state of the C atom is a triplet.

1.7 The Variational Principle

The molecular orbitals (MOs) are generally written as linear combinations of atomic orbitals
(AOs)

φ =
n∑
i=1

ciχi

where the coefficients are usually assumed to be real.

The optimize the coefficients in MO theory and minimize the ground-state energy, we turn
to the variational theorem:

For a time-independent Hamiltonian with ground-state energy E0, if φ is any normalized,
well-behaved function of the electron coordinates and satisfies the boundary conditions, then

E = 〈φ|Ĥ|φ〉 ≥ E0

(
or

∫
φ∗Ĥφdτ ≥ E0

)
this gives an upper bound to the ground-state energy.

Proof: expand φ in terms of the eigenfunctions of Ĥ

φ =
∑
i

aiψi where Ĥψi = Eiψi
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then

〈φ|Ĥ|φ〉 =
∑
i

∑
j

a∗i aj〈ψi|Ĥ|ψj〉

=
∑
i

∑
j

a∗i ajEj〈ψi|ψj〉

=
∑
i

∑
j

a∗i ajEjδij

=
∑
j

|aj|2Ej

and since E0 is the ground-state energy, Ej ≥ E0

∴ 〈φ|Ĥ|φ〉 ≥
∑
j

|aj|2E0

and φ is normalized, so
∑

j |aj|2 = 1

∴ 〈φ|Ĥ|φ〉 ≥ E0

Note that, if φ is not normalized, this becomes

〈φ|Ĥ|φ〉
〈φ|φ〉

≥ E0

If the wavefunction, φ, depends on an adjustable parameter, a, then the energy is minimized
when

∂E

∂a
= 0

We typically use the H AOs to build wavefunctions for many-e− atoms and molecules. How-
ever, the optimum size of the orbitals can be quite different depending on the nuclear charge
and number of electrons. Thus, a is frequently the adjustable exponent in an atomic orbital,
which allows the size of the AO to be optimized:

φ = f(a)e−ar

The drawback is that the exponent is a non-linear parameter. It is easier to fit linear
parameters to minimize the energy.

For the case that φ is a linear combination of fixed AOs

φ =
∑
i

ciχi
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(or other basis functions), again assumed to be real, then

E =
〈φ|Ĥ|φ〉
〈φ|φ〉

=

∫
(
∑n

i=1 ciχi) Ĥ
(∑n

j=1 cjχj

)
dτ∫

(
∑n

i=1 ciχi)
(∑n

j=1 cjχj

)
dτ

rearranging
n∑
i=1

n∑
j=1

cicj

∫
χiĤχjdτ = E

n∑
i=1

n∑
j=1

cicj

∫
χiχjdτ

We introduce the simplifying notation

〈χi|Ĥ|χj〉 =

∫
χiĤχjdτ = Hij

〈χi|χj〉 =

∫
χiχjdτ = Sij

(the Hamiltonian “matrix elements”)

(the “overlap” integrals)

then
n∑
i=1

n∑
j=1

cicjHij = E
n∑
i=1

n∑
j=1

cicjSij

The energy will be minimized when ∂E
∂ci

= 0 for all ci.

Differentiating wrt ci
n∑
j=1

cjHij = E
n∑
j=1

cjSij

and there will be n such equations, one for each ci. Thus, this is a set of n linear equations
in n unknowns, and can be represented in matrix form:

H11 H12 · · · H1n

H21 H22 · · · H2n
...

...
. . .

...
Hn1 Hn2 · · · Hnn



c1
c2
...
cn

 = E


S11 S12 · · · S1n

S21 S22 · · · S2n
...

...
. . .

...
Sn1 Sn2 · · · Snn



c1
c2
...
cn


Hc = ESc

This can be rewritten as
(H− ES)c = 0

which is a “homogeneous” system of linear equations and will only have non-trivial solutions
for c if the secular determinant is zero

|H− ES| = 0
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H11 − ES11 H12 − ES12 · · · H1n − ES1n

H21 − ES21 H22 − ES22 · · · H2n − ES2n
...

...
. . .

...
Hn1 − ESn1 Hn2 − ESn2 · · · Hnn − ESnn

∣∣∣∣∣∣∣∣∣ = 0

Expanding this determinant gives a nth order polynomial in E, which will give the set of
MO energies as roots. Substituting each root, Ei, back into the matrix equation

(H− EiS)c = 0

gives the expansion coefficients for each MO, φi

φi =
n∑
j=1

cjχj

1.8 The Born-Oppenheimer Approximation

When attempting to solve the SE for molecules, we regard the nuclei as fixed in position –
called the Born-Oppenheimer approximation. It is based on the fact that electrons are much
lighter than nuclei, so they can respond almost instantly to changes in nuclear position. This
is a good approximation for H and excellent for heavier elements.

The Hamiltonian is

Ĥ = T̂e + T̂nuc + V̂ee + V̂e−nuc + V̂nuc−nuc

but T̂nuc = 0 for fixed nuclei and V̂nuc−nuc is a constant, so we need consider only electronic
terms and view the electrons as moving in a constant effective potential from the fixed nuclei.

1.9 MOs for H+
2

The MOs are linear combinations of the 1s AOs on each nucleus

φ = c1χ1 + c2χ2

Because this is a homonuclear bond, the system is symmetric and H11 = H22. Also, the 1s
orbitals are normalized, so S11 = S22 = 1. Then, the secular determinant is∣∣∣∣ H11 − E H12 − ES12

H12 − ES12 H11 − E

∣∣∣∣ = 0
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(H11 − E)2 = (H12 − ES)2

E −H11 = ±(H12 − ES)

E(1± S) = H11 ±H12

E =
H11 ±H12

1± S
(∗)

To evaluate the terms in (∗), consider the Hamiltonian for H+
2

Ĥ = −1

2
∇2 − 1

r1
− 1

r2
+

1

R

H11 =

〈
χ1

∣∣∣∣−1

2
∇2 − 1

r1
− 1

r2
+

1

R

∣∣∣∣χ1

〉
=

〈
χ1

∣∣∣∣−1

2
∇2 − 1

r1

∣∣∣∣χ1

〉
+

〈
χ1

∣∣∣∣− 1

r2
+

1

R

∣∣∣∣χ1

〉
= −1

2
+ J

J = 〈χ1| − 1
r2
|χ1〉 + 1

R
is the Coulomb integral and corresponds to the Coulomb interaction

between an electron in a 1s orbital on nucleus 1 with nucleus 2 and the nuclear-nuclear
Coulomb interaction.

Similarly,

H12 =

〈
χ1

∣∣∣∣−1

2
∇2 − 1

r1
− 1

r2
+

1

R

∣∣∣∣χ2

〉
=

〈
χ1

∣∣∣∣−1

2
∇2 − 1

r1

∣∣∣∣χ2

〉
+

〈
χ1

∣∣∣∣− 1

r2
+

1

R

∣∣∣∣χ2

〉
= −1

2
〈χ1|χ2〉+

〈
χ1

∣∣∣∣− 1

r2

∣∣∣∣χ2

〉
+

1

R
〈χ1|χ2〉

= −1

2
S +K

K = 〈χ1| − 1
r2
|χ2〉 + S

R
is the Exchange integral. It has the same form as the Coulomb

integral, except with the electron switching orbitals.
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Then, (∗) simplifies to

E =
−1

2
+ J ± (−1

2
S +K)

1± S

=
−1

2
(1± S) + J ±K

1± S

= −1

2
+
J ±K
1± S

The first term is the H-atom energy and the second the bonding/anti-bonding term.

Since H+
2 is a one-e− system, the integrals S, J , and K can be evaluated analytically and

are found to be

S = e−R
(

1 +R +
R2

3

)
J = e−2R

(
1 +

1

R

)
K =

S

R
− e−R (1 +R)

Note that as R → ∞, J,K, S → 0 and E = −1
2
. The dissociation limit is the energy of an

infinitely-separated H atom and proton.

The orbital energies and potential energy curves are:

E− = −1

2
+
J −K
1− S

ψ− =
1√

2(1− S)
(χ1−χ2)

ψ+ =
1√

2(1 + S)
(χ1+χ2)

E+ = −1

2
+
J +K

1 + S

anti-bonding orbital
excited state

bonding orbital
ground state

The exact result is a minimum ground-state energy of E = −0.602 a.u. More accurate
solutions can be obtained by adding more atomic orbitals (i.e. 2pz) to the wavefunction.
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Qualitative MO Theory

2.1 MOs for H2

As for H+
2 , the MOs are linear combination of the 1s AOs.

φ = c1χ1 + c2χ2

This wavefunction for H2 will yield the same secular determinant as for H+
2∣∣∣∣ H11 − E H12 − ES12

H12 − ES12 H11 − E

∣∣∣∣ = 0

and the same expression for the orbital energies,

E =
H11 ±H12

1± S

However, since this is a 2e−-system, the integrals are much more difficult to evaluate. We
will evaluate them later, but now, we will look at the more qualitative bonding/anti-bonding
behaviour by expanding the energies in terms of the overlap, S.

Assuming that the overlap is S << 1, we use the Taylor expansion:

1

1± S
≈ 1∓ S + S2 + . . .

To second order in S,

E1 = (H11 +H12)(1− S + S2 + . . .)

= H11 + (H12 −H11S)− (H12 −H11S)S + . . .

18
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E2 = (H11 −H12)(1 + S + S2 + . . .)

= H11 − (H12 −H11S)− (H12 −H11S)S + . . .

The first term, H11, is negative and is the 1s orbital energy for a non-interacting H atom.

H12 is also negative, so the second term ±(H12 −H11S) lowers the energy of E1 and raises
E2. Both energies are raised slightly by the third term, ∆ = −(H12 −H11S)S.

To first order:

anti-bonding orbital

To second order:

anti-bonding orbital

raising
by ∆
−→

bonding orbital bonding orbital

With respect to the non-interacting AO energies, E2 is raised more than E1 is lowered - this
is why noble-gas dimers do not form bonds.

For H2 in the ground state (singlet)

Bonding interaction, stabilizing

and in the excited state (triplet)

Destabilizing interaction.

The triplet state of H2 is not bound (in the
absence of dispersion).
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Also, the amount of overlap between AOs determines the strength of the bond and the extent
of stabilization/destabilization of the bonding and anti-bonding MOs.

Equilibrium bond length: Stretched bond length:

vs.

high overlap, large stabilization low overlap, small stabilization

2.2 Heteronuclear Diatomics

For a heteronuclear diatomic, then H11 6= H22 and the orbital energies are:

E1 ≈ H11 −
(H12 −H11S)2

H22 −H11

E2 ≈ H22 +
(H12 −H11S)2

H22 −H11

and the energy difference between the AOs affects the stabilization of the MOs.

vs.

small energy difference, large stabilization large energy difference, small stabilization

If the energy difference between the AOs is very large, then there is no stabilization and we
say that the orbitals do not mix.
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Thus, to form MOs, two (or more) AOs must have significant overlap and similar energies.
Core overlap can be neglected and we consider overlap between valence orbitals only.

Returning to the MO coefficients, they will be equal in the homonuclear case:

φ2 = c(χ1 − χ2)

φ1 = c(χ1 + χ2)

negative linear combination
anti-bonding orbital

positive linear combination
bonding orbital

In the heteronuclear case, the bonding orbital will have a greater contribution from the lower-
energy AO, while the anti-bonding will have a greater contribution from the higher-energy
AO.

anti-bonding orbital – σ∗

bonding orbital – σ

2.3 2nd-Period Diatomics

Consider overlap of the p orbitals for atoms along the z-axis

• positive overlap – resulting in a bonding orbital

σ-bonding orbital (end-on interaction,
density accumulation along the bond)

π-bonding orbital (side-on interaction,
nodal plane through bond axis)
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• negative overlap – resulting in an anti-bonding orbital

σ∗ orbital

π∗ orbital

• zero overlap – resulting in non-bonding orbitals

no net overlap, S = 0 orbitals do not interact

The orbital interactions are:

1sA ± 1sB −→ core orbitals do not mix

2sA ± 2sB −→ 2sσ, 2sσ∗

2pz,A ± 2pz,B −→ 2pzσ, 2pzσ
∗

2px,A ± 2px,B −→ 2pxπ, 2pxπ
∗

2py,A ± 2py,B −→ 2pyπ, 2pyπ
∗

The MO diagram is:

2.4 Secondary Orbital Mixing

If orbitals have the same symmetry and similar energies, they can mix to provide greater
stabilization. For example, the 2sσ and 2pzσ can mix, causing the lower-energy σ orbital to
become more stable and the higher-energy σ orbital to become less stable. The 2sσ∗ and
2pzσ

∗ can also mix.
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unmixed wrt symmetry
O, F, Ne since 2s and 2p orbitals have very

different energies

mixed wrt symmetry
B, C, N since 2s and 2p orbitals have

similar energies

To obtain the electronic configuration, follow Hund’s rule of unpairing for degenerate orbitals.

The bond order is:

BO =
1

2

[(
#e−′s in bonding

orbitals

)
−
(

#e−′s in antibonding

orbitals

)]
The HOMO is the highest occupied MO and the LUMO is the lowest unoccupied MO.
Molecules with all paired electrons are diamagnetic, while molecules with unpaired electrons
are paramagnetic.

2.5 MO Diagrams for Linear Polyatomic Molecules

MOs for a larger molecules can be constructed by from the overlap of orbitals on smaller
fragments. We make use of symmetry and consider overlap of a central atom or fragment
with a collection of equivalent terminal atoms.

EX. Linear H3

Consider mixing of the σ and σ∗ MOs of the H2 with the 1s AO of the central H atom.
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EX. Linear H4

Higher-energy MOs have an increasing number of nodes perpendicular to the bond axis,
resembling the particle-in-a-box wavefunctions.

2.6 Symmetry Operations and Groups

Symmetry operations are transformations where the configuration of the nuclei is unchanged.

Cn: n-fold rotation (by 360◦/n) about an axis

σ: reflection in a plane

Sn: n-fold improper rotation – rotation by 360◦/n, followed by reflection in the plane
perpendicular to the axis of rotation

i: inversion through a centre of symmetry (i.e. x, y, z → −x,−y,−z), equivalent to S2
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The highest-order Cn axis is taken as the “principal” or z-axis. Reflection planes containing
this axis are σv (vertical) and planes perpendicular to this axis are σh (horizontal).

EX. ethane

C3 rotation
σv reflection
S6 improper rotation
i centre of inversion

Every molecule can be assigned to a symmetry group based on the possible symmetry oper-
ations.

1. No Cn axis

C1 – no symmetry elements (except the identity operation)

Cs – a single reflection plane

Ci – a centre of inversion symmetry only

2. A single Cn axis

Cn – a Cn rotation axis only

Cnv – a Cn axis and n vertical reflection planes (H2O, NH3, HF)

Cnh – a Cn axis and a horizontal reflection plane (RHC=CHR)

Dnh – a Cn axis, n vertical and one horizontal reflection planes (BH3, C6H6)

Dnd – a Cn axis with a S2n axis (C2H6)

Two uncommon groups are:

Dn – a Cn axis with nC2 axes perpendicular

Sn – only a Sn improper rotation axis

3. Groups with many (n > 2) equivalent Cn axes

Td – regular tetrahedron (CH4)

Oh – regular octahedron (SF6)

Ih – regular icosahedron (C60)

MOs can also be assigned labels based on their symmetries:

a – non-degenerate, symmetric wrt Cn rotation about principal axis

b – non-degenerate, anti-symmetric wrt Cn rotation about principal axis

e – doubly degenerate

t – triply degenerate



26 Chapter 2. Qualitative MO Theory

Subscripts of g (gerade) or u (ungerade) specify whether the MO is symmetric or anti-
symmetric wrt inversion. Superscripts of ′ or ′′ specify whether the MO is symmetric or anti-
symmetric wrt reflection in a horizontal plane. Subscripts of 1, 2, 3, . . . distinguish between
different types of a, b, e, t symmetries; there are no simple rules – use character tables.

2.7 MO Diagrams for Centro-Symmetric Molecules

Consider overlap of AOs on the central atom with those on the symmetry-equivalent terminal
atoms.

EX. BeH2 (linear) – consider overlap of s and p orbitals of Be with the hydrogen 1s orbitals.

The anti-bonding MOs can be generated
by changing the sign of the AO on the
central atom.

Overlap between s orbitals will be greater
than between s and p orbitals, giving
greater stabilization.

The MO diagram is:
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EX. BH3 (trigonal planar) – overlap of B s and p with H 1s AOs.

The MO diagram is:

EX. CH4 (tetrahedral) – overlap of C s and p with H 1s AOs.
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The MO diagram is:

EX. SH6 (octahedral) – overlap of S s, p, and d with H 1s AOs.

Need to involve some 3d orbitals to form bonds to 6 ligands – use 3dz2 and 3dx2−y2 since
these are equivalent in Oh symmetry.
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The MO diagram is:

If the ligands also have p orbitals, then overlap with the dxy, dxz, and dyz AOs on the S
would generate π-bonding MOs.

2.8 MOs versus Localized Hybrid Orbitals

Our MO theory diagram gives a picture of delocalized orbitals for methane, with unequal
orbital energies. Alternatively, we can mix the 2s and 2p orbitals of the C atom to give 4
equivalent sp3 hybrid orbitals, with each forming a bond to a H 1s AO.

φ1 =
1

2

(
χ2s + χ2px + χ2py + χ2pz

)
φ2 =

1

2

(
χ2s − χ2px + χ2py − χ2pz

)
φ3 =

1

2

(
χ2s + χ2px − χ2py − χ2pz

)
φ4 =

1

2

(
χ2s − χ2px − χ2py + χ2pz

)
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Similarly, for the BeH2 example, we could mix the Be 2s and 2pz AOs to give 2 equivalent
sp hybrid orbitals, with each forming a bond to a H 1s AO.

φ1 =
1√
2

(χ2s + χ2pz)

φ2 =
1√
2

(χ2s − χ2pz)

How can the delocalized and hybrid MO pictures be reconciled? They are related by a linear
transformation, such that the total energy is unchanged.

Consider a linear transformation of the occupied MOs that satisfy the SE

Ĥφi = Eiφi

to another set of MOs

φ′i =
∑
k

aikφk

We require the new set of MOs to be orthogonal∫
φ′iφ

′
jdτ = δij∫ (∑

m

aimφm

)(∑
n

ajnφn

)
dτ = δij∑

m

∑
n

aimajn

∫
φmφndτ = δij∑

m

∑
n

aimajnδmn = δij∑
n

ainajn = δij

In matrix multiplication, the product AA is

AAij =
∑
n

ainanj

Thus, our result ∑
n

aina
T
nj = δij
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can be written in matrix form as

AAT = I

where AT is the transpose of matrix A and I is the identity matrix. If the orbitals are also
normalized, this is the definition of a unitary transformation.

The total electron density is not affected by this transformation

ρ′ =
∑
i

(φ′i)
2

=
∑
i

(∑
m

aimφm

)(∑
n

ainφn

)
=

∑
m

∑
n

φmφn
∑
i

aimain

=
∑
m

∑
n

φmφnδmn

=
∑
n

φ2
n

= ρ

It can be shown that the total energy is unchanged as well. Thus, any set of orthogonal MOs
is equally valid for describing the total electron density and energy of a molecule. We say
these properties are invariant wrt unitary orbital transformations. However, the individual
orbital energies will differ.

Linear combinations of AOs yield delocalized MOs while linear combinations of hybrid AOs
yield maximally localized MOs (LMOs). LMOs cannot be used to describe electronic spec-
troscopy because they are not eigenstates of Ĥ

Ĥφ′i 6= Eiφ
′
i

Only the delocalized MOs are eigenstates of Ĥ and have well-defined orbital energies. MOs
must be used to describe electronic spectroscopy, although LMOs can be useful to interpret
bonding (and in designing more efficient computational algorithms).

2.9 Jahn-Teller Distortions

The total electron density of a filled (or half-filled) set of degenerate orbitals has the same
symmetry as the nuclear framework.

EX. the filled p-shell for a noble-gas atom has spherical symmetry
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EX. the filled t2 MOs in methane gives the density tetrahedral symmetry

However, if a degenerate set of orbitals is not half-filled or filled, the molecule will distort to
lower the energy.



Chapter 3

Quantitative MO Theories

3.1 Hückel Theory

This applies to conjugated polyenes and arenes. Treat the π-electrons as moving in a fixed
effective potential from the σ-bonding framework. π-orbitals are delocalized over each of the
carbon atoms.

Make the following assumptions when constructing the secular determinant:

• all overlap integrals are Sij = δij

• all diagonal Hamiltonian matrix elements are Hii = α (Coulomb integral)

• all off-diagonal Hamiltonian matrix elements are set equal to zero, except those between
neighbouring atoms, which are assigned the same value β (resonance integral)

α and β are both negative. β is assigned the empirical value of -0.75 eV = -17 kcal/mol.

EX. Ethylene. Each C atom contributes a 2pz orbital to the π system.

φπ = c1χ1 + c2χ2

where χ1 and χ2 are the 2pz orbitals of each carbon.

The secular determinant is: ∣∣∣∣H11 − ES11 H12 − ES12

H12 − ES12 H22 − ES22

∣∣∣∣ = 0

33
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In the Hückel approximation, this becomes∣∣∣∣α− E β
β α− E

∣∣∣∣ = 0

(α− E)2 − β2 = 0

α− E = ±β

E = α± β

and the roots are E = α± β.

To find the coefficients, solve the system of linear equations

(α− E)c1 + βc2 = 0

βc1 + (α− E)c2 = 0

and normalization requires that c21 + c22 = 1.

For E = α− β,

βc1 + βc2 = 0

c1 = −c2

and applying the normalization constraint, c1 = 1√
2
, c2 = − 1√

2

For E = α + β,

−βc1 + βc2 = 0

c1 = c2

and applying the normalization constraint, c1 = 1√
2
, c2 = 1√

2

The energy-level diagram is

φ2 =
1√
2

(χ1 − χ2)

φ1 =
1√
2

(χ1 + χ2)

The π-electronic energy is Eπ = 2α + 2β
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EX. Butadiene. The MOs are linear combinations of four 2pz orbitals.

φn =
4∑
i=1

cinχi

The secular determinant within the Hückel approximation is∣∣∣∣∣∣∣∣
α− E β 0 0
β α− E β 0
0 β α− E β
0 0 β α− E

∣∣∣∣∣∣∣∣ = 0

Factor β from each column and let x = α−E
β

, then∣∣∣∣∣∣∣∣
x 1 0 0
1 x 1 0
0 1 x 1
0 0 1 x

∣∣∣∣∣∣∣∣ = 0

The secular equation is
x4 − 3x2 + 1 = 0

x2 =
3±
√

5

2

x = ±

(
3±
√

5

2

)1/2

E = α±

(
3±
√

5

2

)1/2

β

The energy-level diagram is:

φ4 = aχ1 − bχ2 + bχ3 − aχ4

φ3 = bχ1 − aχ2 − aχ3 + bχ4

φ2 = bχ1 + aχ2 − aχ3 − bχ4

φ1 = aχ1 + bχ2 + bχ3 + aχ4

a = 0.372, b = 0.602
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The total π-electronic energy is 4α+ 2
√

5β. This is lower than the sum of two unconjugated
π-bonds. The delocalization energy is:

Eπ(butadiene)− 2Eπ(ethylene) = (4α + 2
√

5β)− 2(2α + 2β)

= (2
√

5− 4)β

= 0.472β

= −8.2 kcal/mol

This is the additional stabilization due to π-conjugation in butadiene.

EX. Benzene. The MOs are linear combinations of six 2pz orbitals.

φn =
6∑
i=1

cinχi

The secular determinant is∣∣∣∣∣∣∣∣∣∣∣∣

α− E β 0 0 0 β
β α− E β 0 0 0
0 β α− E β 0 0
0 0 β α− E β 0
0 0 0 β α− E β
β 0 0 0 β α− E

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

The six roots are

E1 = α + 2β

E2 = E3 = α + β

E4 = E5 = α− β

E6 = α− 2β

φ1 =
1√
6

(χ1 + χ2 + χ3 + χ4 + χ5 + χ6)

φ2 =
1

2
(χ2 + χ3 − χ5 − χ6)

φ3 =
1√
3

(
χ1 +

χ2

2
− χ3

2
− χ4 −

χ5

2
+
χ6

2

)
φ4 =

1

2
(χ2 − χ3 + χ5 − χ6)

φ5 =
1√
3

(
χ1 −

χ2

2
− χ3

2
+ χ4 −

χ5

2
− χ6

2

)
φ6 =

1√
6

(χ1 − χ2 + χ3 − χ4 + χ5 − χ6)
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The energy-level diagram is:

The total π-electronic energy is

Eπ = 2(α + 2β) + 4(α + β)

= 6α + 8β

The delocalization energy is

Eπ(benzene)− 3Eπ(ethylene) = (6α + 8β)− 3(2α + 2β)

= 2β

= −34.6 kcal/mol

The stabilization due to π-conjugation in benzene is much greater than in butadiene, ex-
plained by the concept of aromaticity.

Hückel theory also allows a definition of bond order, between pairs of atoms j, k

Pjk =
∑
i

nicjicki

where the summation runs over each MO and ni is the occupation number.

EX. Ethylene

φ1 =
1√
2
χ1 +

1√
2
χ2, n1 = 2

P12 = 2

(
1√
2

)(
1√
2

)
= 1
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which indicates a single π-bond. The total σ + π bond order for the C-C bond is 2.

EX. Benzene

P12 = 2

(
1√
6

)(
1√
6

)
+ 2 (0)

(
1

2

)
+ 2

(
1√
3

)(
1

2
√

3

)
=

1

3
+

1

3
=

2

3

P23 = 2

(
1√
6

)(
1√
6

)
+ 2

(
1

2

)(
1

2

)
− 2

(
1

2
√

3

)(
1

2
√

3

)
=

1

3
+

1

2
− 1

6
=

2

3

Similarly,

P34 = P45 = P56 = P61 =
2

3

The total σ + π bond order is 12
3

and all bonds are equivalent.

Hückel theory can also be used to explain reactivity. Focus on the HOMO and LUMO of
the reacting molecules – the “frontier” orbitals.

If the orbital symmetries are such that

• HOMO1 overlaps HOMO2, then the reaction is symmetry forbidden and has a high
barrier

2-orbital, 4-e− interactions are
destabilizing

• HOMO1 overlaps LUMO2 (or vice versa), then the reactions is symmetry allowed and
has a low barrier.

or
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EX. Ethylene dimerization to cyclobutane

The HOMOs overlap, so the reaction cannot occur (although it can if one molecule is excited).

EX. Diels-Alder reaction

The HOMOs overlap with the LUMOs, so the reaction is symmetry allowed.

This approach forms the basis of the Woodward-Hoffmann rules.

3.2 Extended Hückel Theory

This methods treats all valence e−s for all atom types. One hydrogen-like AO or Slater-type
orbital (STO) is assigned for each valence AO. Core AOs are neglected.
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STOs have the form
χ = Nrn−1e−ζrY`m(θ, φ)

where the orbital exponent ζ (zeta) is determined by Slater’s rules for the effective nuclear
charge.

When constructing the secular determinant, all overlap integrals, Sij, are computed from
integrating the STOs, but approximations are made for the Hamiltonian matrix elements.

The diagonal matrix elements, Hii, are approximated as the negative of the corresponding
free-atomic ionization potential, which should equal the AO energy in the free atom.

The off-diagonal matrix elements are approximated as

Hij =
1

2
K (Hii +Hjj)Sij

called the Wolfsberg-Helmholz-Hoffmann formula. K is a constant with empirically deter-
mined value of K = 1.75. This formula ensures that Hij → 0 as Sij → 0 and the atoms are
non-interacting.

The MO energies are then evaluated computationally from the secular determinant.

Extended Hückel theory provides qualitatively correct results, but not quantitative chemical
accuracy. It is commonly used as a “guess” for more expensive computational methods.

3.3 MO Theory for H2 Revisited

To obtain quantitative chemical accuracy with MO theory, the solutions become complicated
for many-e− systems.

Consider H2 as a relatively simple example

Ĥ = −1

2

(
∇2

1 +∇2
2

)
− 1

r1A
− 1

r1B
− 1

r2A
− 1

r2B
+

1

r12
+

1

R

The 1
r12

term is not separable into a product of terms depending only on e−1 and e−2 , so the
problem cannot be solved analytically. We instead need to construct an approximate form
for the wavefunction.
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The MOs are linear combinations of the 1s AOs on each nucleus

φ = cAχA + cBχB

Recall that, for H+
2 , the bonding and anti-bonding orbitals were

φ− =
1√

2(1− S)
(χA − χB)

φ+ =
1√

2(1 + S)
(χA + χB)

S =

∫
χAχBdτ

= 〈χA|χB〉
is the overlap integral

For H2, both electrons will be paired in the bonding orbital

Recall also that, for a many-e− system, the wavefunction must be antisymmetric – use a
Slater determinant (similar to He).

ψ =
1√
2

∣∣∣∣φ+(1)α(1) φ+(1)β(1)
φ+(2)α(2) φ+(2)β(2)

∣∣∣∣
This can be separated into a product of spatial and spin terms

ψ = φ+(1)φ+(2) · 1√
2

[α(1)β(2)− α(2)β(1)]

The energy depends only on the spatial part.

ψ =
1

2(1 + S)
[χA(1) + χB(1)] [χA(2) + χB(2)]

=
1

2(1 + S)
[χA(1)χB(2) + χB(1)χA(2) + χA(1)χA(2) + χB(1)χB(2)]

covalent terms –
configurations with electrons

on different atoms

ionic terms –
configurations with both

electrons on the same atom

The energy can be evaluated from

E = 〈ψ|Ĥ|ψ〉 =

∫ ∫
ψĤψdr1dr2

It can be shown that this wavefunction gives the energy

E = −1 +
1

R
− 2j′ + 2k′

1 + S
+
j + 2k + 4`+m

2(1 + S)2
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The electron-nuclear terms are:

j′ =

∫
1

rB
χ2
Adr =

∫
1

rA
χ2
Bdr

k′ =

∫
1

rA
χAχBdr =

∫
1

rB
χAχBdr

and are analogous to the Coulomb and exchange integrals in H+
2 .

The electron-electron terms are:

j =

∫ ∫
1

r12
χ2
A(1)χ2

B(2)dr1dr2 = (AB|AB)

k =

∫ ∫
1

r12
χA(1)χA(2)χB(1)χB(2)dr1dr2 = (AA|BB)

` =

∫ ∫
1

r12
χ2
A(1)χA(2)χB(2)dr1dr2 = (AA|AB)

m =

∫ ∫
1

r12
χ2
A(1)χ2

A(2)dr1dr2 = (AA|AA)

This gives the following potential energy curve:

The energy is higher than the exact energy
at the minimum, which is -1.174 a.u.

(error of ∼ 2 eV)

There are two reasons for this:

• the basis set is incomplete (only 1s orbital)

• the form of the wavefunction is not sufficiently flexible – it is only a single Slater
determinant – ionic and covalent terms have equal weighting

This also causes the dissociation limit to be higher in energy than the exact limit of −1 a.u.
(energy of two separated H atoms).

In the dissociation limit, the wavefunction should consist only of the covalent terms. This
can be corrected by including more Slater determinants (or electronic configurations) in the
wavefunction.
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3.4 Configuration Interaction for H2

CI is an extension of MO theory to include excited-state electronic configurations in the
wavefunction. For H2

ground electronic state, paired electrons in φ+ (bonding MO)

excited electronic state, paired electrons in φ− (anti-bonding MO)

Write the wavefunction as a sum of Slater determinants with variable coefficients (the CI
coefficients) to be optimized.

ψ =
c1√

2

∣∣∣∣φ+(1)α(1) φ+(1)β(1)
φ+(2)α(2) φ+(2)β(2)

∣∣∣∣+
c2√

2

∣∣∣∣φ−(1)α(1) φ−(1)β(1)
φ−(2)α(2) φ−(2)β(2)

∣∣∣∣
= [c1φ+(1)φ+(2) + c2φ−(1)φ−(2)] · 1√

2
[α(1)β(2)− α(2)β(1)]

Considering only the spatial part

ψ =
c1

2(1 + S)
[χA(1) + χB(1)] [χA(2) + χB(2)] +

c2
2(1− S)

[χA(1)− χB(1)] [χA(2)− χB(2)]

=
c1(1− S)− c2(1 + S)

2(1 + S)(1− S)
[χA(1)χB(2) + χB(1)χA(2)] +

c1(1− S) + c2(1 + S)

2(1 + S)(1− S)
[χA(1)χA(2) + χB(1)χB(2)]

= c′1ψcovalent + c′2ψionic

This gives a flexible weighting of the covalent and ionic terms (as opposed to the equal
weighting with a single Slater determinant). The CI coefficients can be optimized at each
value of the bond length to give the potential energy curve.

The minimum energy is -1.119 a.u., lower than before,
but still above the exact result (by ∼ 1.5 eV) as

expected from the variational principle.
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The configuration mixing recovers the correct dissociation limit, where the wavefunction
consists only of the covalent terms, which can be obtained from an even mixture of the two
determinants.

This is actually represented as ↑ ↓ + ↓ ↑ or

ψ =
1√
2

∣∣∣∣1sA(1)α(1) 1sB(1)β(1)
1sA(2)α(2) 1sB(2)β(2)

∣∣∣∣+
c2√

2

∣∣∣∣1sA(1)β(1) 1sB(1)α(1)
1sA(2)β(2) 1sB(2)α(2)

∣∣∣∣
which will give the same electron density.

To obtain better approximations for the minimum energy, higher-lying AOs beyond 1s (i.e.
2pz) must be included. CI is exact in the limit of including all possible configurations (with
a complete basis set) and models the physics of “electron correlation”.



Chapter 4

Introduction to Quantum-Chemical
Calculations

4.1 Overview of Electronic-Structure Methods

Since the 1
rij

term is not separable, the SE cannot be solved analytically for many-e− systems

and we turn to a hierarchy of computational approximations.

• Semi-empirical

• Hartree-Fock

• Density-functional theory

• Perturbation theory

• Coupled-cluster theory

• Configuration interaction

increasing accuracy
and

computational cost

• Hartree-Fock (HF) is the simplest MO theory. It represents the wavefunction as a single
Slater determinant and therefore treats exchange exactly. However, it neglects electron
correlation – the correlation energy is defined as the difference between the exact energy
and the HF energy. With HF, electronic energies are too high and molecules are severely
underbound.

• Semi-empirical methods (extended Hückel, AM1) are based on HF, but some integrals
are replaced by empirical parameters, fit to experiment. Typically give very poor
energies, but very fast and good for geometries.

• Configuration interaction (CI) uses HF as a starting point and includes correlation

45
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effects by adding contributions from many excited-state determinants to the wave-
function. It is exact in the limit of including all possible configurations (variational
principle). Very accurate, but impractical for molecules with > 2− 4 atoms.

• Coupled-cluster theory (CCSD(T)) is based on HF and includes the majority of corre-
lation effects by considering single, double, and (approximate) triple excitations. This
“gold-standard” approach is exact for two electrons and quite accurate for larger sys-
tems, but is only practical for < 20 atoms.

• Perturbation theory (MP2) treats electron correlation as a small perturbation to the
HF energy. The correlation energy is evaluated from 2nd-order perturbation theory.
This is the most efficient of the post-HF or “ab initio” methods, but the least accurate.

• Density-functional theory (DFT) is the most common approach used in computational
chemistry since it frequently provides the best balance between computational time
and accuracy. The energy is obtained as a function of the electron density, ρ, rather
than the wavefunction. No exact form for E[ρ] is known, so many different forms have
been proposed and there are many density-functional methods. The most popular in
chemistry is B3LYP and the most popular in physics is PBE.

4.2 Overview of Basis Sets

The wavefunction (or electron density) is constructed from atomic orbitals that are approx-
imated by linear combinations of Gaussian functions.

The more functions included in the basis set, the better the description of the orbitals and
the lower the energy (variational principle).

Pople-style

• 6-31G*

• 6-31+G**

• 6-311+G(2d,2p)

Dunning-style

• cc-pVDZ

• aug-cc-pVTZ

• aug-cc-pVQZ

increasing accuracy
and

computational cost



4.3. Potential Energy Surfaces 47

4.3 Potential Energy Surfaces

The Born-Oppenheimer approximation allows construction of PES.

The energy can be viewed as a function of the nuclear coordinates

E = E(q1,q2,q3, . . . ,qN)

The PES is therefore a 3N -dimensional function of the nuclear positions.

The PES is characterized by “stationary points”, which are minima, maxima, or saddle
points, where all first derivatives are zero.

∂E

∂qi

= 0 ∀qi

These derivatives are the forces on the nuclei due to the electrons. At the stationary points,
all the forces are zero.

To differentiate between the types of stationary points, second derivatives of the energy, ∂2E
∂qi

2 ,
are needed.

The reactants, intermediates, and products are local minima on the PES and will have all
∂2E
∂qi

2 > 0.

The transition states are first-order saddle points on the PES and will have one ∂2E
∂qi

2 < 0 in

the direction of the intrinsic reaction coordinate (i.e. minimum energy in all directions but
one).
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4.4 Overview of Calculation Types

• A single-point energy calculation (default) evaluates the energy of a molecule at a fixed,
input geometry with the specified method and basis set. The energy is quite sensitive
to the level of theory. Recall that energies are given in Hartree atomic units and are
relative to infinitely-separated electrons and nuclei.

• A geometry optimization (Opt) determines the optimum geometry (shape, bond lengths,
angles, dihedrals) of the molecule. This sort of calculation will find the nearest station-
ary point on the PES where the forces (derivatives) are zero – can be a local minimum
or saddle point.

• A frequency calculation (Freq) calculated the vibrational frequencies (2nd derivatives
of the energy). The frequencies can be used to verify that the geometry is optimized
to a stable structure and not a saddle point.

• Other calculation types are also possible – NMR, excited states, etc.

4.5 Input for a Gaussian Calculation

• Route card – starts with #, specifies the type of calculation to be run, including
method, basis set, and any other options (Opt, Freq, etc.).

• Title – note to yourself about the calculation.

• Charge and multiplicity – two integers to specify the electronic configuration.

• Molecular structure – positions of all nuclei, specified using either Cartesian coordinates
or a Z-matrix.

4.6 Z-matrices

To perform a calculation on a chemical system, we must specify the atomic (nuclear) po-
sitions. This can be done within Cartesian coordinates, but it is hard to construct the
geometry of non-linear molecules in Cartesians without molecule-building software. Instead,
a Z-matrix defines the positions of all atoms based on bonding connectivity (bond lengths,
angles, and dihedrals).

The form of a Z-matrix is:
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Atom symbol
Atom symbol bonded to # bond length
Atom symbol bonded to # bond length angle with # angle
Atom symbol bonded to # bond length angle with # angle dihedral with # dihedral

The form of the last line is repeated for all subsequent atoms.

EX. H2O

O
H 1 1.0
H 1 1.0 2 105.0

EX. NH3

N
H 1 1.0
H 1 1.0 2 109.5
H 1 1.0 2 109.5 3 120.0

EX. CH4

C
H 1 1.1
H 1 1.1 2 109.5
H 1 1.1 2 109.5 3 120.0
H 1 1.1 2 109.5 3 -120.0

Note that angles cannot be 0◦ or 180◦, so a dummy atom, X, is used in linear molecules.

EX. HCN

C
N 1 1.2
X 1 1.0 2 90.
H 1 1.1 2 90. 2 180.

Variables are often used in the Z-matrix, such as R1, A1, D1, with values specified below the
Z-matrix. These can be separated into variables that are allowed to optimize and constraints
that are kept fixed. This also allows users to scan over a particular variable.
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EX. Dissociation curve for HF

H
F 1 R

R 0.5 S 20 0.1

4.7 Basis Sets

Slater-type orbitals (STOs, H-atom wavefunctions) are the obvious choice, but the evaluation
of the Coulomb and exchange (4-center, 2-e−) integrals is impractical.

Calculations on large molecules were made feasible by use of Gaussian-type orbitals.

Gaussian basis functions have the form

gijk(r) = Nxiyjzke−αr
2

where the origin of the coordinate system is the atomic nucleus. N is a normalization
constant, α is a positive exponent, and i, j, k are whole numbers such that

i = j = k = 0 −→ s orbital
i+ j + k = 1 −→ p orbital
i+ j + k = 2 −→ d orbital

The problem with GTOs is that several Gaussians are needed to recover a good approxima-
tion to the nuclear cusps.

Several GTOs are combined to form contracted basis functions, which are fixed linear com-
binations of primitive Gaussians.

χm =
∑
n

dmngn
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The MOs are then expressed as linear combinations of the contracted Gaussians with variable
coefficients.

φi =
∑
j

cijχj

Minimal basis sets have the notation

STO− nG

where each STO is represented by n (usually 3 or 6) Gaussians.

A simple (Pople-style) split-valence basis set is

core −→ 6− 31G←− valence

For core electrons, each STO is represented by 6 Gaussian functions. For valence electrons,
each orbital is represented by two contracted basis functions, one with 3 Gaussians, one with
1 Gaussian. This is called a double-ζ basis set, due to the two contracted basis functions for
the valence.

Split-valence basis sets allow more flexibility because the valence orbitals can expand or
contract depending on how the contracted functions are weighted.

6-31G* or 6-31G(d)← the * or (d) indicates addition of higher angular momentum functions
that can polarize the density to all elements except the s-block of the periodic table. For
p-block elements, polarization functions are a set of d-type Gaussians (actually 6 functions,
instead of 5, for all combinations of i + j + k = 2). For d-block elements, polarization
functions are a set of f -type Gaussians.

6-31G(2d)← the (2d) denotes 2 sets of higher angular momentum functions (d functions for
p-block or f functions for d-block).

6-31G** or 6-31G(d,p) ← the second * or (,p) means addition of p-functions to H (or other
s-block elements).

6-311G* would be a triple-ζ basis set, with each valence orbital represented by 3 contracted
basis functions.
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6-31+G* ← the + indicates addition of diffuse functions to all elements except the s-block.
This is effectively going from double- to triple-ζ, but the extra basis functions are very
diffuse, designed for anions, where the atomic size is much larger. A second + sign indicates
addition of diffuse functions to H (and other s-block elements) as well. Diffuse functions are
also important for H-bonding and other intermolecular interactions.

Energies slowly converge to the basis-set limit as the number of basis functions increases
(variational principle).

EX. For the C atom, need 1s, 2s, and 3 2p orbitals.

STO-3G 5 basis functions (1 per AO)
3× 5 = 15 primitive Gaussians

3-21G 1(core) + 2 · 4(valence) = 9 basis functions
3(core) + 3 · 4(valence) = 15 primitives

6-31G 1(core) + 2 · 4(valence) = 9 basis functions
6(core) + 4 · 4(valence) = 22 primitives

6-311G* 1(core) + 3 · 4(valence) + 6(polarization) = 19 basis functions
6(core) + 5 · 4(valence) + 6(polarization) = 32 primitives

The energy will decrease variationally as more basis functions are added.

4.8 Introduction to Statistical Mechanics

MO theory tells us the electronic energies of molecules. However, we want to make a con-
nection with thermochemical data (reaction enthalpies and free energies), which depend on
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temperature. This can be done via stat mech, which is a bridge between QM and thermo-
dynamics.

At zero Kelvin, all systems will exist in their QM ground state, while at finite temperature,
the population of possible energy levels is given by the Boltzmann distribution.

The fraction of particles in quantum state i is

Pi =
ni
N

=
1

Q
e−Ei/kT

where Ei is the energy of state i, obtained from a QM calculation. T is the temperature in
Kelvin and k is Boltzmann’s constant.

Q =
∑
i

e−Ei/kT

is the partition function. It is the central function in stat mech, analogous to the wavefunction
in QM. Its magnitude is related to how many energy levels a system can access at a given
T . If the energy levels involve degeneracy, the partition function can be written as

Q =
∑
i

gie
−Ei/kT

where gi is the degeneracy of the ith level. The ground state energy, E0 is set to zero by
convention.

The thermodynamic functions U (energy), S (entropy), H (enthalpy), G (Gibbs free energy),
and A (Helmholtz free energy) can all be determined from the partition function.

The energy at finite temperature is

U = E0 +
∑
i

niEi

= E0 +
N

Q

∑
i

Eie
−Ei/kT
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but
∂Q

∂T
=
∑
i

Ei
kT 2

e−Ei/kT so

U = E0 +
NkT 2

Q

(
∂Q

∂T

)
= E0 +NkT 2

(
∂ lnQ

∂T

)
For the particular case of a harmonic oscillator, the energy levels are En = E0 + nhν, so the
partition function is

Q =
∑
n

e−nhν/kT

this can be simplified to eliminate the sum over states by using the geometric series
∑

n x
n =

1
1−x so

Q =
1

1− e−hν/kT

U = E0 +
NkT 2

Q

(
∂Q

∂T

)
= E0 +NkT 2

(
hν

kT 2

e−hν/kT

1− e−hν/kT

)
= E0 +

Nhν

ehν/kT − 1

so the correction to the energy from thermal vibrations is

Evib(T ) =
Nhν

ehν/kT − 1

4.9 Comparing Energies with Thermodynamic Data

We must account for nuclear motion due to zero-point vibrations, as well as thermal motion
from translation, rotation, and vibrations.

For a harmonic oscillator, the zero-point energy is the energy difference between the bottom
of the well and the n = 0 level.

E =

(
n+

1

2

)
hν ⇒ EZPE =

1

2
hν
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For a molecule, the ZPE is a sum over all the vibrational modes

EZPE =
∑
i

1

2
hνi

At zero Kelvin, the electronic energy is corrected by the ZPE

E(O) = Eel + EZPE

At temperatures above zero Kelvin, use stat mech to determine the energy contributions
from occupation of various rotational, translational, and vibrational levels:

E(T ) = Eel + EZPE + Evib(T ) + Etrans(T ) + Erot(T )

For translation and rotation, the QM energy levels are so close together that we can assume
the classical limit, and

Etrans(T ) =
3

2
kT

Erot(T ) =

{
3
2
kT (non− linear)

kT (linear)

Assuming harmonic vibrations,

Evib(T ) =
∑
i

hνi
ehνi/kT − 1

Finally, the enthalpy can be obtained from the thermally corrected energy by adding a
pressure-volume correction:

H = E + kT

The thermal energy, enthalpy, and free-energy corrections are listed in the frequency section
of the Gaussian output.
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Electronic-Structure Methods

5.1 Hartree-Fock Theory

HF is the simplest electronic-structure method for self-consistent numerical solution of the
SE. The assumption is that the wavefunction can be represented as a single N -electron Slater
determinant.

ψ =
1√
N !

∣∣φ1 φ2 · · · φN
∣∣

For a general polyatomic molecule, the Hamiltonian can be written as

Ĥ =
∑
i

ĥi +
1

2

∑
i 6=j

1

rij

where ĥi is the one-electron Hamiltonian for electron i

ĥi = −1

2
∇2
i −

Nnuc∑
A=1

ZA
riA

and the factor of 1
2

prevents double-counting of e−-e− interactions.

The HF energy is

E = 〈ψ|Ĥ|ψ〉

=

〈
ψ

∣∣∣∣∣∑
i

ĥi +
1

2

∑
i 6=j

1

rij

∣∣∣∣∣ψ
〉
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The one-electron integrals are:

〈ψ|
∑
i

ĥi|ψ〉 =
N∑
i=1

〈φi|ĥi|φi〉 =
N∑
i=1

〈i|ĥ|i〉

The two-electron integrals are:〈
ψ

∣∣∣∣∣12 ∑
i 6=j

1

rij

∣∣∣∣∣ψ
〉

=
1

2

∑
i 6=j

[〈
φi(1)φj(2)

∣∣∣∣ 1

r12

∣∣∣∣φi(1)φj(2)

〉
−
〈
φi(1)φj(2)

∣∣∣∣ 1

r12

∣∣∣∣φj(1)φi(2)

〉]
=

1

2

∑
i 6=j

(〈ij|ij〉 − 〈ij|ji〉)

which is a difference of Coulomb and exchange integrals.

∴ E =
N∑
i=1

〈i|ĥ|i〉+
1

2

∑
i 6=j

(〈ij|ij〉 − 〈ij|ji〉)

To find the orthonormal set of spin orbitals, φi, that give the minimum energy, apply the
variational theorem. We want to minimize the energy by changing the orbitals (i.e. ∂E

∂φi
= 0

for each orbital). This gives the set of Fock equations:

f̂φi = εiφi

where
f̂ = ĥi +

∑
j

(Ĵj − K̂j)

is the Fock operator. Ĵj is the Coulomb operator, K̂i is the exchange operator, and the εi
are the orbital energies.

These operators are defined such that the Coulomb integrals are

〈ij|ij〉 = 〈i|Ĵj|i〉

and the exchange integrals are
〈ij|ji〉 = 〈i|K̂j|i〉

Note that the Coulomb and exchange operators depend on all the orbitals. This requires
self-consistent solution of the HF equations.

An initial approximate form for the orbitals (i.e. LCAOs, generalized Hückel) is used to
evaluate the Coulomb and exchange integrals. The Fock equations are then solved to obtain
improved orbitals and energies. The cycle is repeated until the HF energy (and orbitals) are
converged.
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The HF orbital energies are

εi = 〈i|ĥ|i〉+
∑
j

(
〈i|Ĵj|i〉 − 〈i|K̂j|i〉

)
= 〈i|ĥ|i〉+

∑
j

(〈ij|ij〉 − 〈ij|ji〉)

So the sum of orbital energies is

N∑
i=1

εi =
N∑
i=1

〈i|ĥ|i〉+
∑
i 6=j

(〈ij|ij〉 − 〈ij|ji〉)

which is not equal to the total HF energy because it counts all the e−-e− interactions twice.
The total energy, in terms of the orbital energies, is

E =
N∑
i=1

εi −
1

2
(〈ij|ij〉 − 〈ij|ji〉)

The orbital energy is the energy required to remove an electron from that orbital, assuming
that the remaining electron distribution is undisturbed. This gives Koopmans’ theorem: the
ionization energy I of an electron from orbital φi is the negative of the orbital energy, εi, or

I = −εHOMO

This is only an approximation because the remaining N − 1 electrons have a different set of
HF orbital energies in the cation than in the neutral species. However, Koopmans’ theorem
would be exact if an exact electronic-structure method was used.

5.2 The Roothan-Hall Method

The HF procedure is straightforward for atoms due to their high symmetry, but more complex
for molecules. The Roothan-Hall approach is used to transform the problem into a matrix
equation.

Introduce a set of N◦ basis functions, χi. These can be thought of as AOs, but are usually
Gaussian functions. Express each MO, φn, in terms of these basis functions

φn =
N◦∑
j=1

cnjχj

This expression is substituted into the Fock equations to give

f̂

N◦∑
j=1

cnjχj = εn

N◦∑
j=1

cnjχj
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To solve for the orbitals, φn, we need only optimize the coefficients.

Multiply through by an arbitrary basis function, χi, and integrate to give

N◦∑
j=1

cnj〈i|f̂ |j〉 = εn

N◦∑
j=1

cnj〈i|j〉

Let Fij be the Fock matrix elements, Fij = 〈i|f̂ |j〉 and Sij be the overlap matrix elements,
Sij = 〈i|j〉. Then,

N◦∑
j=1

Fijcnj = εn

N◦∑
j=1

Sijcnj

and this is a set of N◦ equations in N◦ unknowns for the coefficients and orbital energies.

This can be written as a single matrix equation

FC = ESC

where C is the coefficient matrix, with elements cnj and E is a diagonal matrix of the orbital
energies. This matrix equation is solved iteratively for the coefficient matrix.

An initial guess for C is used to construct F. The equation is then solved to obtain a new
C matrix and the orbital energies. The process is repeated until convergence is reached.

5.3 Configuration Interaction

HF does not give the exact wavefunction. It considers only the average Coulomb interaction
between electrons, ignoring correlation.

Basis sets with N◦ functions give N◦ MOs, but only the lowest-lying are occupied in HF
theory, leaving N◦ − 1

2
Ne unoccupied or “virtual” orbitals.

Let the ground-state have the (HF) wavefunction, ψ◦

ψ◦ =
∣∣φ1 φ2 · · · φa φb · · · φn

∣∣ ↑↓
↑↓
↑↓

A singly-excited determinant is a wavefunction where a single electron has been excited from
the occupied spin orbital φa to the virtual spin orbital φp.
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ψpa =
∣∣φ1 φ2 · · · φp φb · · · φn

∣∣
↑

↑↓
↓
↑↓

A doubly-excited determinant is a wavefunction where two electrons have been excited from
occupied spin orbitals φa and φb to virtual spin orbitals φp and φq.

ψpqab =
∣∣φ1 φ2 · · · φp φq · · · φn

∣∣
↑
↓
↑
↓
↑↓

Higher excitations can be generated in the same way.

The exact ground-state wavefunction can be expressed as a linear combination of all possible
Ne-electron Slater determinants (of the correct multiplicity) arising from a complete set of
spin orbitals. The CI wavefunction is

ψ = c◦ψ◦ +
∑
a,p

cpaψ
p
a +

∑
a<b
p<q

cpqabψ
pq
ab +

∑
a<b<c
p<q<r

cpqrabcψ
pqr
abc + . . .

where the c’s are CI coefficients that are variationally optimized.

The difference between the exact energy and the HF limit is the correlation energy. CI
accounts for the electron correlation neglected by HF.

CI calculations are very computationally demanding – in practise, only a limited number of
configurations, differing from ψ◦ by no more than a few spin orbitals are used. The most
common is CISD (single and double excitations only).

CI calculations are variational, meaning that they can never obtain a lower energy than the
exact ground-state energy. However, such truncated CI calculations are not size consistent,
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meaning that they can give a lower energy for two isolated atoms or molecules than for the
infinitely separated complex.

EX. He2 with CISD

↑ ↓ ↑↓
↑↓ ↓ ↑ For a single He atom, CISD is full CI

However, configurations where the electrons on each He atom are doubly excited are missing
from a CISD calculation on He2, since that would be a quadruple excitation. This means
that calculations on separate He atoms will give a lower energy than for the dimer. This
is a problem for computing dissociation energies with CI. Size-consistent variants, called
quadratic configuration interactions methods (QCI, QCISD) have been developed and are
used in most computational chemistry packages.

5.4 Perturbation Theory

Assume we have solved the SE
Ĥ◦ψ◦n = E◦nψ

◦
n

for a set of wavefunctions, ψ◦n. Now, introduce a small perturbation term to the Hamiltonian,
Ĥ ′, which will result in a different set of wavefunctions and energies.

The SE cannot be solved exactly for the new Hamiltonian

Ĥ = Ĥ◦ + Ĥ ′

but because the perturbation is small, the solution should be similar to the unperturbed
case.

The new (perturbed) problem to be solved is

Ĥψn = Enψn where Ĥ = Ĥ◦ + λĤ ′

and λ is a coupling strength parameter used to keep track of the level of approximation.

λ = 0 ⇒ Ĥ(λ) = Ĥ◦

λ = 1 ⇒ Ĥ(λ) = Ĥ

The method of solution is to postulate

En = E◦n + λE1
n + λ2E2

n + . . .
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ψn = ψ◦n + λψ1
n + λ2ψ2

n + . . .

Substituting into the SE gives

(Ĥ◦ + λĤ ′)(ψ◦n + λψ1
n + λ2ψ2

n + . . .) = (E◦n + λE1
n + λ2E2

n + . . .)(ψ◦n + λψ1
n + λ2ψ2

n + . . .)

This must be true for every value of λ between 0 and 1, so it must be true order by order.

To order λ0: Ĥ◦ψ◦n = E◦nψ
◦
n ← idealized problem, known solution

To order λ1: Ĥ◦ψ1
n + Ĥ ′ψ◦n = E◦nψ

1
n + E1

nψ
◦
n (∗)

To order λ2: Ĥ◦ψ2
n + Ĥ ′ψ1

n = E◦nψ
2
n + E1

nψ
1
n + E2

nψ
◦
n

To find the first-order correction to the energy, multiply (∗) by ψ◦n and integrate. This gives

〈ψ◦n|Ĥ◦|ψ1
n〉+ 〈ψ◦n|Ĥ ′|ψ◦n〉 = E◦n〈ψ◦n|ψ1

n〉+ E1
n〈ψ◦n|ψ◦n〉

but 〈ψ◦n|Ĥ◦|ψ1
n〉 = E◦n〈ψ◦n|ψ1

n〉 and 〈ψ◦n|ψ◦n〉 = 1. Thus

E1
n = 〈ψ◦n|Ĥ ′|ψ◦n〉

is the first-order energy correction.

For the first-order correction to the wavefunction, let

ψ1
n =

∑
m

cmnψ
◦
m

substitute this definition into (∗) to give

(Ĥ◦ − E◦n)
∑
m

cmnψ
◦
m = −(Ĥ ′ − E1

n)ψ◦n

multiply through by ψ◦` and integrate∑
m

cmn(E◦` − E◦n)〈ψ◦` |ψ◦m〉 = −〈ψ◦` |Ĥ ′|ψ◦n〉+ E1
n〈ψ◦` |ψ◦n〉

c`n(E◦` − E◦n) = −〈ψ◦` |Ĥ ′|ψ◦n〉+ E1
nδ`n

This gives two cases. If ` = n, we recover the first-order energy correction. If ` 6= n,

c`n = −〈ψ
◦
` |Ĥ ′|ψ◦n〉
E◦` − E◦n
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Returning to our definition of ψ1
n, the first-order correction to the wavefunction is

ψ1
n =

∑
m,m 6=n

〈ψ◦m|Ĥ ′|ψ◦n〉
E◦n − E◦m

ψ◦m

Similarly, for the second-order correction to the energy, consider the order-λ2 equation,
multiply through by ψ◦n and integrate:

〈ψ◦n|Ĥ◦|ψ2
n〉+ 〈ψ◦n|Ĥ ′|ψ1

n〉 = E◦n〈ψ◦n|ψ2
n〉+ E1

n〈ψ◦n|ψ1
n〉+ E2

n〈ψ◦n|ψ◦n〉

E◦n〈ψ◦n|ψ2
n〉+ 〈ψ◦n|Ĥ ′|ψ1

n〉 = E◦n〈ψ◦n|ψ2
n〉+ E1

n(0) + E2
n(1)

E2
n = 〈ψ◦n|Ĥ ′|ψ1

n〉
Thus, the second-order energy correction is

E2
n =

∑
m,m 6=n

|〈ψ◦m|Ĥ ′|ψ◦n〉|2

E◦n − E◦m

5.5 Møller-Plesset Perturbation Theory

CI improves on HF theory using the variational principle. Alternatively, we can improve on
HF using perturbation theory.

In HF, the one-electron Fock operator is

f̂m = −1

2
∇2
m −

∑
A

ZA
rmA

+
n∑
j=1

(
Ĵj − K̂j

)
The MP unperturbed Hamiltonian is taken to be the sum of the Fock operators.

Ĥ◦ =
n∑

m=1

f̂m

The HF wavefunction is an eigenfunction of Ĥ◦ and the eigenvalue is the sum of the orbital
energies.

Ĥ◦ψ◦ =

(
n∑

m=1

εm

)
ψ◦

Let the perturbation Ĥ ′ be the difference between the true e−-e− repulsion and the average
HF repulsion.

Ĥ ′ = Ĥ − Ĥ◦ =
∑
m>`

1

r`m
−

n∑
m,j

(
Ĵj − K̂j

)
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The ground-state energy, to first order is:

E = E◦ + E1

= 〈ψ◦|Ĥ◦|ψ◦〉+ 〈ψ◦|Ĥ ′|ψ◦〉
= 〈ψ◦|Ĥ|ψ◦〉
= EHF

So first-order perturbation theory recovers the HF energy. To improve on HF, we must find
the second-order energy correction.

E2 =
∑
i

|〈ψi|Ĥ ′|ψ◦〉|2

E◦ − Ei

where the ψi’s are the unperturbed determinants for all possible excited configurations
formed from the spin orbitals.

The matrix elements are non-zero only for doubly-excited configurations, so

EMP2 = EHF +
∑
a<b
p<q

|〈ψpqab |Ĥ ′|ψ◦〉|2

εp + εq − εa − εb

MP2 is less computationally demanding than CISD. MP2 is size-consistent but, unlike CISD,
it is not variational. This means that it can give an energy below the exact value. CI and
MP calculations are termed post-HF or “ab initio”.

5.6 Coupled-Cluster Theory

The main limitation of truncated CI methods is that they are not size consistent. CC theory
is similar in spirit of CI, but ensures size consistency by construction.

Define a set of operators that convert the ground-state HF wavefunction ψ◦ (single Slater
determinant) into linear combinations of excited-state determinants.

T̂1ψ◦ =
∑
a,p

tpaψ
p
a

T̂2ψ◦ =
∑
a<b
p<q

tpqabψ
pq
ab

and so forth. The t coefficients are called the CC amplitudes.

The “cluster” operator is a sum of single, double, etc. excitations

T̂ = T̂1 + T̂2 + T̂3 + . . . T̂N
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In practise, T̂ is truncated at some order. For CCSD (singles and doubles),

T̂ = T̂1 + T̂2

The fundamental premise of CC theory is that the wavefunction can be written as

ψ = eT̂ψ◦

The operator eT̂ is defined by the Taylor series expansion

eT̂ = 1 + T̂ +
T̂ 2

2!
+
T̂ 3

3!
+ . . .

The effect of this operator is to express the wavefunction as a linear combination of ψ◦ and
excited Slater determinants.

For the case of CCSD,

eT̂ = eT̂1+T̂2 = 1 + T̂1 + T̂2 +
1

2
T̂ 2
1 + T̂1T̂2 +

1

2
T̂ 2
2 + . . .

which includes higher-order excitations than CISD. The extra excitations included in the
CCSD wavefunction restore size consistency and provide a more accurate description of the
correlation energy.

The CCSD energy is given by

Ĥ
(
eT̂1+T̂2ψ◦

)
= ECCSD

(
eT̂1+T̂2ψ◦

)
and is obtained by iteratively solving a set of non-linear equations for the CC amplitudes
until self-consistence is reached.

CC methods are preferred over CI since they are more accurate while maintaining the same
computational cost. However, the CC methods are not variational (although in practise they
are quite close).

5.7 Density-Functional Theory (DFT)

Given the number of electrons (N), then the external potential V (r) (from the nuclei) gen-
erates the ground-state wavefunction, ψ, via the Hamiltonian, Ĥ

Ĥ =
∑
i

(
−1

2
∇2
i

)
+ V +

1

2

∑
i 6=j

1

rij
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or V → Ĥ → ψ → E (and other observable properties). All properties can thus be considered
functionals of the potential, but the wavefunction also generates the electron density

ρ =

∫
· · ·
∫
ψ∗ψdr2 · · · drN

so V → ψ → ρ. Hohenberg and Kohn showed that this mapping is one-to-one, so it is
reversible and ρ → V → ψ → E and all properties are unique functions of the electron
density.

In particular, the kinetic and potential energies are functionals of ρ:

kinetic:

e−-e−:

e−-nuc:

〈
ψ

∣∣∣∣∣−1

2

∑
i

∇2
i

∣∣∣∣∣ψ
〉

= T (ρ)

〈
ψ

∣∣∣∣∣12 ∑
i 6=j

1

rij

∣∣∣∣∣ψ
〉

= Vee(ρ)

〈ψ|V |ψ〉 =

∫
V ρ(r)dr

However, the Hohenberg-Kohn theorem is an existence proof only and we do not know
simple ρ-dependent expressions for T (ρ) and Vee(ρ). Practical DFT calculations are based
on Kohn-Sham theory.

Consider a system of “non-interacting” electrons having the same density as the real system.
The orbitals will satisfy the simple Schödinger equation

−1

2
∇2ψi + V◦ψi = ε◦ψi

where V◦ is the non-interacting potential and

ρ =
N∑
i=1

ψ2
i

The kinetic energy of the non-interacting system

T◦ = −1

2

∑
i

∫
ψi∇2

iψidr

is likely a good approximation to the real kinetic energy.
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We write the total energy as

E(ρ) = T◦(ρ) +

∫
V ρdr + J(ρ) + EXC(ρ)

where the classical e−-e− Coulomb repulsion is

J(ρ) =
1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2

and EXC defines the exchange-correlation energy

EXC = [T (ρ) + Vee(ρ)]− [T◦(ρ) + J(ρ)]

which is the difference between the exact and classical contributions to the energy and
accounts for the QM effects of exchange and electron correlation.

As in HF, the DFT energy is minimized wrt the orbitals by self-consistent solution

−1

2
∇2ψi +

(
V + Vel +

δEXC

δρ

)
ψi = εiψi

where Vel =
∫ ρ(r2)

r12
dr2 is the Coulomb potential and δEXC

δρ
is the XC potential.

However, the exact XC functional is unknown. There is no systematic route to obtain it and
many forms have been proposed, none of which are variational. Density-functional methods
are usually classified according to Perdew’s ladder.

• LDA – the local density approximation. EXC depends only on ρ

ELDA
X = cX

∫
ρ4/3dr

There is no closed-form expression for the correlation energy. This approximation
strongly overbinds chemical systems (to roughly the same extent that HF underbinds).

• GGA – generalized gradient approximation. EXC depends on ρ and χ = |∇ρ|/ρ4/3
(reduced density gradient). Commonly,

EGGA
X = ELDA

X +

∫
F

(
ρ,
|∇ρ|
ρ4/3

)
dr

The extra term lowers the energy beyond the LDA and gives improved bond energies
(errors ∼ 10 kcal/mol). The most common GGAs are BLYP (in chemistry) and PBE
(in physics).
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• meta-GGA – energies depend on ρ, ∇ρ, ∇2ρ, and τ =
∑

i |∇ψi|2, which is the kinetic-
energy density. These typically involve many empirical parameters and offer little
advantage over GGAs. SCAN is a meta-GGA with growing popularity in physics.

• hybrid functionals – include a mixture of density-functional and Hartree-Fock exchange.

EX = cEHF
X + (1− c)EGGA

X

Proposed in 1995 by Axel Becke, these remain the most common and most reliable
class of density functionals (errors ∼ 2 − 4 kcal/mol for bond energies). The most
popular are B3LYP (chemistry) and PBE0 (physics).

• range-separated hybrid functionals – also include a mixture of HF and DFT, now
dependent on the e−-e− interaction range r12. For molecules, long-range HF exchange
and short-range GGA exchange gives the best performance and reduces errors seen with
conventional hybrids for charge transfer, but the optimal range-separation is highly
system dependent. For solids, short-range HF exchange and long-range GGA exchange
reduces the computational cost relative to conventional hybrids. Common methods are
LC-BLYP and LC-wPBE (chemistry) and HSE (physics).

Hybrid functionals typically work well since HF is exact exchange, but no correlation,
while GGAs approximate both exchange and correlation simultaneously. Thus, adding some
amount of HF improves the treatment of exchange and improves chemical accuracy for many
problems.



Chapter 6

Summary and Review

To model chemical bonding using molecular-orbital theory:

• Construct molecular orbital orbitals (MOs) as linear combinations of (s, p, d, . . . )
atomic orbitals (AOs) with variable coefficients

φi =
∑
j

cijχj

• Use the variational principle to optimize the coefficients to minimize the energy. The
variational principle provides an upper bound to the exact energy for suitable trial
MOs/wavefunctions and minimizing the energy wrt any variable parameters will pro-
vide the best approximation to the ground-state energy.

• When the MOs are linear combinations of AOs, optimizing the coefficients involves
solving the secular determinant for the MO energies.

∣∣∣∣∣∣∣∣∣
H11 − ES11 H21 − ES21 · · · Hn1 − ESn1
H12 − ES12 H22 − ES22 · · · Hn2 − ESn2

...
...

. . .
...

H1n − ES1n H2n − ES2n · · · Hnn − ESnn

∣∣∣∣∣∣∣∣∣ = 0

• Sketch the MO diagram using the resulting MO energies and fill with electrons. The
MO diagram will help you write the single-determinant wavefunction.

69
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ψ◦ =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) · · · φN(1)
φ1(2) φ2(2) · · · φN(2)

...
...

. . .
...

φ1(N) φ2(N) · · · φN(N)

∣∣∣∣∣∣∣∣∣
• More accurate wavefunctions can be constructed by adding more Slater determinants

corresponding to excited electronic states. This adds in effects of electron correlation
and improves the description of the dissociation limit for chemical bonds.

• In real calculations, Gaussian basis functions are used to construct the MOs; increasing
the basis-set size increases the accuracy.

• In the simplest electronic-structure method, Hartree-Fock theory, the MO coefficients
are optimized by iteratively solving the Fock equations

f̂φi = εiφi

where the Fock operator is

f̂ = ĥ+
∑
j

(
Ĵj − K̂j

)
Self-consistent solution is required since treatment of the e−-e− interactions involves
evaluation of Coulomb and exchange integrals that depend on all other MOs in the
molecule.


