
CHEM4301/5301 - Theory of Chemical Bonding Linux Tutorial

Alastair J. Price, Erin R. Johnson

Winter 2021

Required items for the course:

• Access to PC running Windows, OSX, or a distribution of Linux (recommended).

• High-speed internet connection.

Recommended Items:

• Webcam.

• Microphone.

• “Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian” by Foresman
and Frisch.

• Avogadro https://avogadro.cc/

This will be an outline of getting started and how to do the computational chemistry components within
this course. This outline should provide all of the steps to install and access the computational resources at
Dalhousie University within the Johnson group. If you have any questions or issues with the course itself,
you should first reference the course syllabus, before emailing Professor Johnson. All other questions related
to how to access the computer resources should be directed to the Teaching Assistant, Alastair Price.

This document will be of particular importance for the final two assignments, which will use the Gaussian
electronic-structure program. Students are expected to perform all Gaussian calculations independently and
should save their input and output files on the Linux server. Students must have unique input and output
files. Copying files from another student will result in a mark of zero on the related assignment.

1 SSH and SCP

Secure Shell (SSH) will be used widely in this course to navigate to and from the server. SSH is a crypto-
graphic network protocol for operating networked computers securely over an unsecure network. This allows
for a remote login from one computer to another, and has many alternative options for authentication. In
this course, we will be utilising password based authentication in order to access the servers. The other
major protocol that we will be using in this course is the secure copy protocol (SCP). Like SSH, this is a
cryptographic network protocol but, instead of operating the networked computer, it acts as a means for file
transfer between two networked computers. Other methods, such as sftp and rsync do exist (and can be
used), but will not be discussed in this document.

If you will be working with a windows machine, continue reading in subsection 1.1; for OSX based
computers continue on to subsection 1.2 and, for linux, subsection 1.3

1

https://avogadro.cc/

1.1 Windows SSH and SCP

Historically, the ability to SSH has not been included within windows. Recent versions of Windows 10
have included a SSH client as an optional feature, but it is not installed by default. The two main meth-
ods available to users of windows machines are the PuTTY https://www.putty.org/ terminal and what
will be demonstrated in this document, MobaXterm https://mobaxterm.mobatek.net/. MobaXterm is
recommended due to its ease of use and graphical user interface (GUI) familiar to most Windows users.

MobaXterm provides windows all of the important network tools, such as SSH and SCP, as well as
many basic unix commands that will be used within this course. Additionally, MobaXterm contains a
graphical SFTP browser, bypassing the need to utilise SCP and negating the requirement to further in-
stall a Xserver to use any graphical content. MobaXterm can be downloaded from https://mobaxterm.

mobatek.net/download.html. When downloading, make sure you first select the Home edition (which is
free) before selecting the MobaXterm Home edition (Installer edition) https://mobaxterm.mobatek.net/

download-home-edition.html. Once selected, a dialogue box should appear to begin the download with a
zip directory containing the MobaXterm client.

1.1.1 Installation of MobaXterm

Once downloaded, use your favourite unzip tool to extract all the files from the directory. Some examples
of zip tools are 7zip https://www.7-zip.org/, winrar https://www.win-rar.com/start.html?&L=0, or
WinZip https://www.winzip.com/win/en/zip-file.html. After extraction, double click the Windows
Installer package and follow the prompts to completion. After MobaXterm is fully installed, it can be
opened by double clicking the icon or navigating to the executable within the program files.

Upon first execution of MobaXterm, the user will be prompted with a dialogue box requesting a strong
master password, as in Fig. 1.

Figure 1: MobaXterm Master password; once set it must not be forgotten, or all passwords will be lost.

After setting a strong password and clicking OK, you will likely be prompted with a windows defender
dialogue requesting network access. It is recommended that you give MobaXterm the fullest network access
by clicking both the private and public networks before clicking Allow, as seen in Fig. 2.

2

https://www.putty.org/
https://mobaxterm.mobatek.net/
https://mobaxterm.mobatek.net/download.html
https://mobaxterm.mobatek.net/download.html
https://mobaxterm.mobatek.net/download-home-edition.html
https://mobaxterm.mobatek.net/download-home-edition.html
https://www.7-zip.org/
https://www.win-rar.com/start.html?&L=0
https://www.winzip.com/win/en/zip-file.html

Figure 2: This step will be specific to your version and windows setup.

1.1.2 MobaXterm use

Once MobaXterm has started, you will be greeted with a screen similar to that shown in Fig. 3. From this
point, we will start with clicking the start local terminal button in the centre of the screen. This will open
a new tab or terminal, looking like Fig. 4, which will allow the use of all of the tools and methods described
below.

Figure 3: The start screen of mobaXterm.

3

Figure 4: MobaXterm Terminal.

All SSH sessions will require a few basic pieces of information in order to connect. The first will be
your username, which will be determined and provided for you by the course instructor or TA (the ex-
ample will use chem4301 TA). The second is the location of the SSH server, which in our case will be
propeller at Dalhousie (@propeller.chem.dal.ca). Finally, you will need the password, which should be
changed upon your first login, using the passwd command. The command that will be used to login is ssh

chem4301 TA@propeller.chem.dal.ca, as shown in Fig. 5. Here, chem4301 TA should be replaced by your
specific username.

Upon hitting enter on the ssh command above, you will either be shown Warning: Permanently added

’propeller.chem.dal.ca’ (RSA) to the list of known hosts. and/or prompted with a request for
your password, as in Fig. 6. You will be able to ignore or type in yes to the above warning and then proceed
to enter your password. Of note for security purposes, it will appear that no password is being entered.
DON’T PANIC, proceed to enter the full password before hitting enter. At this point, you can choose to
save the password by clicking yes on the dialogue box that appears. Congrats, you have now connected
remotely to propeller at Dalhousie via ssh. The prompt should look like Fig. 7.

1.1.3 SCP on Windows

Moving on from SSH, the other major tool that will be used is SCP. SCP will allow you to copy files from one
computer (such as your own) to the server in the lab (and many more). The syntax for the scp command
is very similar to that of the ssh command above. Starting from the same place as in Fig. 4, we will scp
a file from the server to your home computer. Note you will only be able to execute the scp command
from your home computer, unless you have a static IP or a registered domain name, which is necessary to
be able to connect to it from the lab server. The scp command has the default syntax of scp [OPTION]

[user@]SRC HOST:]file1 [user@]DEST HOST:]file2, where [OPTION] is one or more of the scp options,
such as cipher, ssh configuration, ssh port, limit, recursive and many more (we will be primarily using the -r

option), the [user@]SRC HOST:]file1 will be the source file and location, and [user@]DEST HOST:]file2

is the destination of the file. For example, to transfer the file file.txt from the server to your computer,
the command will be scp chem4301 TA@propeller.chem.dal.ca:/home/chem4301 TA/file.txt . as can
be seen in Fig. 8.

4

https://www.goodreads.com/quotes/219714-in-many-of-the-more-relaxed-civilizations-on-the-outer
https://linux.die.net/man/1/scp

Figure 5: MobaXterm Terminal ssh command.

Figure 6: MobaXterm Terminal.

After hitting Enter, this will copy the file to your local machine and place it in your current directory
(folder), represented by ./ as can be seen in Fig. 9. The opposite can be done, and sending a file from your
local machine to the server is achieved by the command
scp file.txt chem4301 TA@propeller.chem.dal.ca:/home/chem4301 TA/

This will place a file named file.txt from your local computer back onto the server. Be careful if you
have different versions of files that have the same names on both your local machine and the server, since this
command can and will overwrite the file at the destination with the source (with great power comes great

5

Figure 7: MobaXterm Terminal.

Figure 8: MobaXterm Terminal SCP command.

responsibility). As noted earlier, if you want to transfer whole directories (otherwise known as folders to
Windows users), this can be done by using the -r flag with the SCP command. For example, if I wanted to
transfer my whole home directory, including file.txt, from propeller to my local computer, the command

6

Figure 9: MobaXterm SCP command result.

would be scp -r chem4301 TA@propeller.chem.dal.ca:/home/chem4301 TA .

Depending on your experience with the command line, you may also use the command rsync, which is
a more modern form of scp. The transferring of files will be one of the major commands used in this course,
as it will allow for local editing and imaging of your Gaussian input and output files.

1.2 OSX SSH and SCP

OSX/MacOS, unlike Windows, has a built-in terminal environment, allowing you to work in the same way
you would do with GNU/Linux, but on your home computer. To begin, you will need to open the terminal
via spotlight search (this being the easiest method) with Command-Space and then typing in terminal, as
can be seen in Fig. 10.

Once you have your terminal opened, if you are running MacOS Catalina or greater you will likely need
to switch your shell from Zsh to Bash, which can be done simply by typing bash. Although changing shell is
not 100% necessary, this tutorial has not been tested with Zsh. After this, all of the examples from Sec. 1.1.2
for SSH and SCP will be the same between all operating systems.

1.3 Linux SSH and SCP

As for the Linux users remaining, the commands of ssh, scp, and rsync will likely be already known to
you. In the event that they are new, I recommend looking back at the MobaXterm commands, as they will
be almost identical for all operating systems once the terminal has been opened.

2 Terminal Basics

For this section, the commands will be similar between all three platforms (Linux, Unix, and Windows) as
you will be either using a terminal emulator or be connected directly to the server. The basic commands
that we will be using are ls, mkdir, cd, pwd, cp, mv, more, less, cat, head, tail, grep, awk,

and sed. These commands are fundamental to the understanding and use of the command line with Bash,
which is the default login shell found in most Linux distributions.

7

https://linux.die.net/man/1/rsync
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

Figure 10: Spotlight Search for Terminal.

2.1 The ls command

The ls command is possibly one of the most common and important commands that you will use when
working with the command line interface (or the terminal). The ls command allows you to see the files and
sub-directories that are located in your current working directory. For example, the ls command syntax has
the form ls [option(s)] [file]. Executing the ls command in the home directory on propeller will give
Fig. 11.

Figure 11: The ls command.

In this case, the ls command has listed the only file in the directory, which is file.txt from the scp
example earlier. Some common options for the ls command are ls -a, which shows all of the files and
directories (even the hidden ones), and ls -l, which provides the long list format containing information
such as the read/write-ability of the file, the owner, when it was last changed, etc. The ls command, like
many other commands, can be executed in one directory yet pointed at another, which we will see later.

2.2 The mkdir command

The mkdir command does what it says on the tin – it makes directories or mkdir. It has the syntax
mkdir [options] directory name(s) and any number of directories can be made with this command

8

https://linux.die.net/man/1/ls
https://linux.die.net/man/1/mkdir

simultaneously. If one wanted to create a new directory on propeller named assignments, the command
would be mkdir assignments. As shown in Fig. 12, the new directory can be seen in blue after typing in
the above ls command.

Figure 12: The mkdir command.

2.3 The cd command

The mkdir command leads nicely into the next command, cd, which allows the user to change directory.
The cd command will allow you to change your present working directory and has the syntax cd directory.
For example, if one wishes to access the assignments directory just created above, one would execute cd

assignments/ as in Fig. 13.

Figure 13: The cd command.

Of note here, bash is case sensitive and, therefore, so is cd and all other commands in this tutorial. It is
important that you type file or directory names exactly as they are shown.

The other side to the cd command is when needing to go up a directory. In Fig.13, if you wanted to go
back up to the parent directory of assignments, you would execute the command cd .. The cd command
can also have the names of several directories chained so that you can move through more than one at a
time. Finally, use simply cd to return to your home directory from any point.

2.4 The pwd command

An important command that helps navigate your directory tree is the pwd command, which stands for print
working directory. It prints out the full path of your present working directory and the syntax is simply

9

https://linux.die.net/man/1/cd
https://linux.die.net/man/1/pwd

pwd. An example can be seen in Fig. 14, where the highlighted text is the location of the present working
directory.

Figure 14: The pwd command.

2.5 The cp command

The next command is the copy command or cp. This command has a similar syntax as the scp command,
and has the form cp [option(s)] current name new name. This command will copy a specific file or
directory and can be used either to make a copy with a new name, or to place a copy of the file or directory
in a new location. An example of copying a file can be seen in Fig. 15, where file.txt was copied from the
home directory to the assignments directory, with the new name of file copy.txt.

Figure 15: The cp command.

In order to copy a whole directory with cp, the -r flag must be used, which indicates recursive copying.
This is similar to the use of the -r option with scp. Another useful option flag for the cp command is -i,
which copies interactively, prompting you before it overwrites any preexisting files.

2.6 The mv command

In the same vein as the cp command is the move command or mv. This command has the syntax of mv

[option(s)] current name new name and will move a specific file or directory from its current name and/or
directory to a new name and/or directory. It can be used to rename a file, to move it, or both simultaneously.
For example, moving the file file copy.txt from the assignments directory to the home directory can be

10

https://linux.die.net/man/1/cp
https://linux.die.net/man/1/mv

seen in Fig. 16. One of the few major differences between the mv command and the cp command is that the
mv command does not need the -r flag in order to move entire directories.

Figure 16: The mv command.

2.7 The more, less and cat commands

These three commands are extremely useful in viewing the contents of the files you will generate in this
course, with each command having slightly different effects. We will start with the more command, which
has the syntax of more [option(s)] file name, as in Fig. 17.

Figure 17: The more command.

Executing the more command opens the contents of the file for inspection. You can then scroll through
the file by using the spacebar to move one page forward (or Enter to move forward by only one line) and
the b key to move one page backwards. The result can be seen in Fig. 18.

To search for a string in the file, hit the / key and then type the string you want to find, followed by
Enter. To exit from the more command, either continue paging to the bottom of the file, or hit q on the
keyboard, and you will be returned to the terminal.

The less command has the syntax less [option(s)] file name. It provides a similar output to that
of more, with the main difference being that the less command is technically faster, as it does not load the
entire file at once. Files can be navigated in the same manner using both less and more.

Finally, the cat or concatenate command has the syntax cat [option(s)] file name(s), like more or
less. It has two main functions: concatenating (combining) files and printing the results to the terminal.
If the cat command is used on a single file, it will simply display that file, as shown in Fig. 19. The cat

11

https://linux.die.net/man/1/more
https://linux.die.net/man/1/less
https://linux.die.net/man/1/cat

Figure 18: The more command result.

command is very useful when combined with redirects and appends in order to create a single larger file
from smaller component files.

Figure 19: The cat command result.

2.8 The head and tail commands

Next is the tail command, and the similar command of head. The tail command has the syntax of tail
[option(s)] file name, and by default displays the last 10 lines of a file. Similarly, head displays the first
10 lines. An example of the tail command and its output can be seen in Fig. 20.

One common option used for both tail and head is the -n flag, which allows you to change the default
of the last 10 lines of the file. For example, using tail -n 5 file name will display the last 5 lines of the
file. If you add a plus sign, tail -n +5 file name will display all lines in the file, except for the first 5.

12

https://linux.die.net/man/1/tail
https://linux.die.net/man/1/head

Figure 20: The tail command result.

2.9 The grep command

The grep or g/re/p (globally search for a regular expression and print matching lines) is your search
command for text patterns that match those specified by the user. It is one of the most powerful commands
in your arsenal for this course. The grep command will be used to find specific lines of text within your files
and has the syntax, grep [option(s)] pattern file(s). For example, if you were looking for the level
of theory in your gaussian input file ethanol.gjf and didn’t want to open the file with less or more, grep
could find this line for you, as can be seen in Fig. 21.

Figure 21: The grep command result.

For certain special characters, or for spaces, the grep pattern must be surrounded by delimiters, such as
’bleh is blah’ or "bleh is blah", as can be seen for the second example in Fig. 21. When grep is used
with its default options, the pattern must match exactly (including spaces) and it is case sensitive. Some
useful flags for grep are the -i flag, which ignores the case sensitivity, as well as the -A# flag, which prints
the next number of lines after the pattern match; examples of both are shown in Fig. 21. grep will be widely
used within this course and is an extremely valuable tool in overall competency in GNU/Linux.

13

https://linux.die.net/man/1/grep

2.10 The awk command

The awk command is another important basic tool within bash. awk is effectively its own programming
language and was named after its authors: Aho, Weinberger, and Kernighan. It has the basic syntax of awk

[option(s)] [script] file name, where script can be a simple or more complex awk script. While awk

can be used to do a wide range of things, we will primarily be using it for manipulation of data fields, such as
output values from Gaussian. A small example of the power of awk is shown in Fig. 22, where the command
awk ’print $1, $2, $3, $4’ ethanol.xyz prints out columns 1–4 of the file ethanol.xyz.

Figure 22: The awk command result.

Examples of column manipulation with awk include changing the order of the columns to place the
element column last, and multiplying all entries in the x column by a fixed constant, as shown in Fig. 23.

Figure 23: The awk command examples.

awk can also be used to sum or average the values in a column. These examples only scratch the surface
of the utility of awk. A good resource for examples can be found here, although it is by no means exhaustive.

2.11 The sed command

Finally the sed command, or stream editor, can perform a range of functions on files, such as find and replace,
insertions, and/or deletions of text. sed has a general syntax of sed [option(s)] [script] file name.
The most common utility of sed is editing a file without opening it in a text editor. An example of the

14

https://linux.die.net/man/1/awk
https://www.geeksforgeeks.org/awk-command-unixlinux-examples/
https://linux.die.net/man/1/sed

find and replace action of sed is shown in Fig. 24, where it is used to find the first string that matches the
pattern B3LYP in the file ethanol.gjf and replace it with PBEPBE.

Figure 24: The sed command examples.

The syntax for this example is that the s specifies that sed should substitute the first pattern (B3LYP)
with the second pattern (PBEPBE). This is only done for the first match of that pattern on each line of the
file. If you wished to do it for all matches, the above should read sed ’s/B3LYP/PBEPBE/g’ ethanol.gjf,
where the g at the end requires a global find and replace. Another important flag for the sed command is
the -i flag. Without the -i flag, all the sed command will do is print to the terminal. The -i specifies that
the file should be edited in place and the change will be reflected if you were to cat the file. Much like awk,
sed can do a wide range of things with its own syntax and language. More resources can be found here.

2.12 The rm command

We have saved the rm or remove command, which is the most dangerous command that you will learn, for
last. The syntax is rm [option(s)] file name or dir name, and this will remove the directory or file in
question. The action of rm can be seen in Fig. 25 for the file assignment 42, and then for the directory
assignment 42/. The difference for the removal of a directory over a file is the inclusion of -r for the
directory. In both cases, BE WARNED that, once it is removed, it is gone and cannot be recovered (there
is no recycle bin). Additionally, rm -r will delete all files and sub-directories contained within the parent
directory you chose to delete. Be careful when you run rm that you are deleting the file you really want gone.

Figure 25: An example of the rm command.

15

https://www.geeksforgeeks.org/sed-command-in-linux-unix-with-examples/
https://linux.die.net/man/1/rm

2.13 Auto-complete

The Tab key can be used to auto-complete file, directory, or command names to save time and the effort of
typing them in full. For example, if you wish to cat the file from earlier to see if your sed command worked,
you could type only cat e and then hit the Tab key. Assuming that there are no other directories or files
that begin with e, the bash prompt would auto-complete up to the first divergence, and a second hit of the
tab key would list the possible files, as can be seen in Fig. 26.

Figure 26: An example of auto-complete.

2.14 Wildcards

An important feature in bash is the use of wildcards, which are represented by different special characters.
The most common standard wildcards are * to represent any number of characters in a string and ? to
represent any single character, although there are many others. Wildcards can be extremely useful when
chained with other commands, such as ls, cp, and grep (although they are widely used across all commands).
For example, if you wanted to grep out the route cards to see the levels of theory used in all Gaussian input
files (*.gjf as in Fig. 26), this could be done using grep ’#’ *gjf, as shown in Fig. 27.

Figure 27: An example of a wildcard.

This command can be extremely useful, as it displays both the Gaussian route cards and the corresponding
files in which they were found. The use of a wildcard avoids having to specify each file separately. While
appearing trivial for one or two files, as you begin to get into 10s-1000s and more files, use of wildcards can
become a lifesaver.

16

https://linux.die.net/Linux-CLI/x11655.htm

2.15 File redirection

Redirection is a feature within Linux that, when executing a command, allows you to change the standard
input/output devices. The standard input device is the keyboard, known as stdin, and the standard output
is the screen (terminal), known as stdout. The symbol used for output redirection is the > symbol. It allows
us to run commands such as ls -al > file list, as in Fig. 28. Rather than print the output of ls -la

to the screen, this command redirects it to the file file list.

Figure 28: An example of an output redirection.

Redirection can be extremely useful in conjunction with commands such as grep, where you might search
for the computed energy in a number of Gaussian outputs and want the results listed nicely in a single data
file, but more on that later. The other useful output redirection symbol is the append symbol or >>. Rather
then overwrite the file (if it already exists), use of >> will just append the output of the command to the
bottom of the output file.

The flip side to this is the input redirection symbol, or <. This will become useful to indicate the input
file to be read by Gaussian (or other programs). For example, to execute a Gaussian calculation using our
ethanol.gjf input file, run g09 < ethanol.gjf > ethanol.out.

2.16 Piping

Piping is required for more advanced chaining of commands. A pipe, represented by |, allows the output
of one command to become the input of another. An example of a pipe can be seen in Fig. 29, where the
output of the ls command is piped into the grep command. Here, ls -l | grep ethanol outputs only
the listed files whose names contain the string ethanol.

2.17 Example scripts

This will stand as your final warning that the terminal is (for the most part) case sensitive so, if you find
that scripts or commands are not doing what you expect, the first recommendation will be to check your
case, and also your spelling. Another warning is that, if you execute a command, be prepared for it to do
exactly what you ask – with great power comes great responsibility, and the ability to delete all of your
work. Consider yourself warned.

17

https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-4.html

Figure 29: An example of piping.

We conclude this section with a few example scripts that will become extremely useful in this course for
the workup of your data. These scripts come in the form of the simple bash commands seen above, now
chained together.

The first example concerns extracting the final electronic energies from Gaussian output files. If you
wanted to grep out the final energy from just one file, you could run the command grep Done ethanol.out

| tail -1, which would have the output seen in Fig. 30. This command outputs the very last occurrence
of a line containing the string Done from the Gaussian output; assuming all things have gone correctly, this
would be your final energy for that job. A more advanced solution to extract the final energies from multiple
Gaussian output files simultaneously uses a for loop. Although loops are not covered in this tutorial, the
command for this would be: for i in *out ; do grep -H Done $i | tail -1 ; done.

Figure 30: An example of finding the output energy for a Gaussian job.

Another important component to the output of many Gaussian jobs is the Frequencies (assuming you have
asked to code to calculate them). You will want to verify that there are no negative (or imaginary) modes
to ensure that the geometry has optimised to a stable minimum and not a transition state or higher-order
saddle point. Since the frequencies are reported in increasing order, this can be achieved by looking at the
first occurrence of ‘Frequencies’ in your Gaussian output. The appropriate command is grep Frequencies

ethanol.out | head -1 and the output can be seen in Fig. 31. A for loop can again be employed to iterate
over many files with for i in *out ; do grep -H Frequencies $i | head -1 ; done.

18

Figure 31: An example of finding the Frequencies for a Gaussian job.

Finally, there are other quantities that you will wish to extract from your Gaussian outputs, which
can be found through modifications of the above commands. One example is the thermal correction to
Enthalpy, which can be found using grep Enthalpy ethanol.out. Learning the appropriate search strings
for Gaussian output files is critical to fast and efficient processing of the generated data.

3 Text Editors

Text editors are the bread and butter of any command line interface. Even before the console wars, rabid
fanboys have existed for their specific text editor. A few of note that will be discussed here are vi (actually
VIM, or Vi IMproved, the clone of vi that we will be using), nano, and Notepad++ (for windows users). Other
common ones exist, such as emacs, although they require an inordinate amount of complex hand motions
and gestures, or extra and dislocatable fingers, so they will not be discussed here. Feel free to use whichever
text editor you wish (Word is not a text editor). Just be warned that, if you use one which is not discussed
in this document, help may come in the form of “I don’t know, google it” (Here be dragons).

3.1 vi

VIM, referred to as simply vi going forward, is the text editor with which the authors have the most experience
and, therefore, it will be the preferred choice for editing files. vi is an extremely configurable and efficient
text editor. It is the default editor on most UNIX and UNIX-derived systems (OSX and many GNU/Linux
systems) and can also be downloaded for Windows and many other operating systems (even the Amiga!).

To open a new or existing file with vi, type vi file name. For example, if you wanted to write a Gaussian
input file for the compound formaldehyde, you would first open a new file by typing vi formaldehyde.gjf

and then pressing Return, as in Fig. 32.
vi has three fundamental modes: normal mode, visual mode and insert mode. Most of your time using

vi will be spent in either normal mode or insert mode. Insert mode is the easiest of the modes to understand
and can be accessed by pressing i after opening a file. It allows you to start inserting text at the location
of the cursor. Once you enter insert mode, you will see -- INSERT -- at the bottom of the screen, as in
Fig. 33. In the case of our file formaldehyde.gjf, if we wanted to write the first line of the input, we would
first press i and then type the route card #p B3LYP 6-31G* OPT Freq. This is also shown in Fig. 33.

To exit insert mode, hit escape. This will return you to command mode, which is where the real
power of vi lies. In command mode, you can navigate across the previously written text, run commands to
search, replace, delete, and a whole host of other things, through vi’s own pseudo programming language.
Navigation can be achieved either by using the letters h,j,k,l for left, down, up, right, respectively,
or by using the arrow keys.

The next most important commands for vi are to save and exit. In command mode, type :w and hit
Enter to save your file, as in Fig. 34. You will then see the name of your file appear at the bottom left of

19

https://xkcd.com/378/
https://xkcd.com/1341/
https://www.vim.org/
https://www.vim.org/download.php
https://en.wikipedia.org/wiki/Amiga

Figure 32: Creating and opening a file with vi.

Figure 33: vi insert mode.

Figure 34: vi save file.

the vi window, along with the numbers of lines and characters in the file and confirmation of the write.
Once the file has been written or saved, one can exit or keep working. There are a few different ways to

exit vi; all require being in command mode. The first method is to type :q, followed by Enter, as in Fig. 35.

20

Upon quitting, you will be returned to the command line of the terminal. You can also chain together the
save and quit commands using :wq, which is an amalgamation of the two above commands. An alternative
command to simultaneously save and quit is ZZ. Finally, the combination of :q! quits and abandons all
changes to your file.

Figure 35: vi quit or exit.

Knowledge of far more than the above commands is required before you can unlock the power of vi. In
an effort to not reinvent the wheel, we recommend that you run through the brief vimtutor tutorial, which
can be accessed on the web, or in the terminal by the vimtutor command. vimtutor goes through key
things like copying and pasting text, undo, redo, visual modes, searching, and much more (all surprisingly
quickly). Another helpful resource is a vi cheat sheet and we recommend you keep one at hand, either on
screen or in print. An example can be found here, although many more can be found through google.

As final note, similar to the bash command line, vi does not hold your hand and will delete, overwrite,
or quit without saving if you ask. You, the user, are considered to be the expert, so be careful.

3.2 nano

Another common text editor is GNU nano. While nano is not always installed by default with every Linux
distribution, it is far simpler than vi or emacs as it displays the basic commands to you at all times.
To open either a new or existing file with nano, use the command nano file name, as shown for our file
formaldehyde.gjf in Fig. 36.

Figure 36: nano opening files.

21

https://www.systutorials.com/vim-tutorial-beginners-vimtutor/
https://devhints.io/vim

Unlike vi, nano does not have separate command and insert modes. You can start writing immediately
after opening the program, with navigation being done by the arrow keys. After you have finished editing
the file, you can save it and exit nano using the ^X or ctrl-x command seen at the bottom of Fig. 37. You
will then be prompted to either choose Y to save the changes or N to discard them, as shown in Fig. 38. After
this you will be asked to confirm the file name, and then the program will exit.

Figure 37: nano writing to files.

Figure 38: nano save and exiting.

nano is a very simple, yet efficient, text editor. Generally is a fair bit easier to use than vi for beginners,
although it lacks the more robust and useful features of vi. It is recommended that you use vi over nano

once you become comfortable with Linux, although this is not required.

3.3 Notepad++

Notepad++ is a free and open-source program distributed on the Windows platform and can be downloaded
here. It gives you a fair bit more freedom than the basic Notepad program (should you choose to not download
and install vi), and avoids the issues that are present with word processors (looking at you Microsoft word).
Notepad++ operates in the same manner as many other windows-based programs with options of save,
open, copy, paste, etc. Notepad++ is recommended for Windows users as you cannot use a program like
Microsoft Word to generate your input files or read your output files in this course because it is a word
processor and not a text editor. However, other text editors such as vi are recommended as, should you
need to edit anything on the server itself, Notepad++ will not be available to you.

22

https://notepad-plus-plus.org/
https://ftp.nluug.nl/pub/vim/pc/gvim82.exe

4 Installing Avogadro

Avogadro is free software that will help you to build and visualise molecules, which will be required for the
course. Upon opening the program, the use and navigation of Avogadro will be the same for all OSes.

4.1 Windows

The Avogadro program executable can be downloaded from here.

4.2 OSX

For OSX, you can download the source files from the Avogadro website and follow the instructions here.
Alternatively, you can open the terminal and first install brew via /bin/bash -c "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)". You should then be able
to run the commands here to install Avogadro.

4.3 Ubuntu/debian based versions of linux

To install, run the command: sudo apt install avogadro. To open avogadro, use avogadro or avogadro
file name.

4.4 Avogadro Use

Upon installation of Avogadro, it can be accessed through the normal route of clicking on the executable.
With Linux, you can also run the program from the terminal by typing avogadro or avogadro file name,
where file name is either a Gaussian output file (.out), or a file containing the geometry of a molecule in
Cartesian coordinates (.xyz). Unfortunately, Avogadro does not open standard Gaussian input files, so we
must convert to a .xyz file. Starting with the example of a single water molecule, as in Fig. 39, we must
convert our Gaussian input file and z-matrix into a format that can be read by Avogadro.

Figure 39: Example of water Gaussian input file.

We first transfer our h2o.gjf file to propeller using the scp command learned earlier. Once the file has
been transferred, we must run the newzmat utility packaged with Gaussian, which has the ability to convert
any Gaussian input to a .xyz file. Newzmat can be run using the command newzmat -izmat h2o.gjf

23

https://avogadro.cc/
https://avogadro.cc/
https://avogadro.cc/devel/compiling/
https://brew.sh/
http://macappstore.org/avogadro/

-oxyz h2o.xyz, where -iXXXX is the input file type and -oXXX is the output file type. This command and
its output can be seen in Fig. 40.

Figure 40: Example of running newzmat to convert a Gaussian input file to xyz.

The next step is to edit the .xyz to insert the total number of atoms within the molecule on the very
first line of the file, followed by a blank line, as shown in Fig. 41.

Figure 41: Example of editing the xyz file.

The .xyz file should then be retrieved from the server via scp. Avogadro can read the .xyz file and
display the molecule on screen, as in Fig. 42. The position of manipulation tools to move, rotate, add more
molecules, etc. is highlighted by the central red box. Much like any other program, once you are happy with
your input, you can save and close it using the File menu in the top left of the window.

24

Figure 42: Example of visualising water molecule with Avogadro.

Once you have verified that your input structure is reasonable, you can run the original Gaussian input file.
If you made any changes to the structure in Avogadro, you should save the new geometry and copy the new
xyz coordinates back into your Gaussian input, replacing the original z-matrix. For the first computational
assignment in course, it is important that you stick with using a z-matrix, but Cartesian coordinates can be
used in the second assignment.

Avogadro does have a basic ability to generate Gaussian input files from the Extensions tab, where you
can select the type of calculation, the level of theory, basis set, and much more. However, for production
calculations, it is recommended that you write your route card and specify charge and multiplicity by hand
rather than using this simplistic tool.

You should be now equipped with the basic tools to complete the computational assignments in the
CHEM4301/5301 course and, more generally, for beginning to use Gaussian, one of the first and most
ubiquitous computational chemistry packages for molecular calculations. Good luck and have fun!

25

	SSH and SCP
	Windows SSH and SCP
	Installation of MobaXterm
	MobaXterm use
	SCP on Windows

	OSX SSH and SCP
	Linux SSH and SCP

	Terminal Basics
	The ls command
	The mkdir command
	The cd command
	The pwd command
	The cp command
	The mv command
	The more, less and cat commands
	The head and tail commands
	The grep command
	The awk command
	The sed command
	The rm command
	Auto-complete
	Wildcards
	File redirection
	Piping
	Example scripts

	Text Editors
	vi
	nano
	Notepad++

	Installing Avogadro
	Windows
	OSX
	Ubuntu/debian based versions of linux
	Avogadro Use

