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Chapter 1

Theory Fundamentals

1.1 Review of Wavefunction Theory

For a general chemical system, the Hamiltonian (in atomic units) is

Ĥ = −1

2

∑
i

∇2
i −

∑
i

∑
A

ZA
riA

+
1

2

∑
i 6=j

1

rij

where ZA is the nuclear charge, riA is the electron-nuclear distance, and rij is the electron-
electron distance, rij = |ri − rj|. This is often re-written as

Ĥ = −1

2

∑
i

∇2
i +

∑
i

Vi +
1

2

∑
i 6=j

1

rij

where

Vi = −
∑
A

ZA
riA

is the attractive potential for interaction between the nuclei and electron i.

We generally assume that the wavefunction is a single Slater determinant,

ψ =
1√
N !

∣∣φ1 φ2 · · · φN
∣∣

formed from the occupied, real orbitals. A Slater determinant is the simplest possible form
that ensures antisymmetry. Then, the (Hartree-Fock) energy is

EHF = 〈ψ|Ĥ|ψ〉 = −1

2

∑
i

〈φi|∇2
i |φi〉+

∑
i

〈φi|Vi|φi〉+
1

2

∑
i 6=j

〈
ψ

∣∣∣∣ 1

rij

∣∣∣∣ψ〉
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The first two terms are easy to evaluate as they are only 1-e− integrals, but the last term, con-
sisting of 2-e− integrals, is more difficult. It is typically split up into the classical Coulomb in-
tegrals, describing electron-electron repulsion, and the purely quantum-mechanical exchange
integrals, which serve to lower the repulsion energy.

EHF = −1

2

∑
i

〈φi|∇2
i |φi〉+

∑
i

〈φi|Vi|φi〉+
1

2

∑
i 6=j

〈
φiφj

∣∣∣∣ 1

r12

∣∣∣∣φiφj〉− 1

2

∑
i 6=j

〈
φiφj

∣∣∣∣ 1

r12

∣∣∣∣φjφi〉

Recall that the notation for the 2-e− integrals is:

Coulomb integrals:

Exchange integrals:

J =

∫∫
φ2
i (r1)φ2

j(r2)

r12

dr1dr2

K =

∫∫
φi(r1)φj(r2)φj(r1)φi(r2)

r12

dr1dr2

The problem with this Hatree-Fock theory is the assumption of a single Slater-determinant
wavefunction, which neglects the effects of electron correlation. This causes prediction of
electronic energies that are much too high and also results in poor thermochemistry.

To improve on HF theory, electron correlation can be modeled using the virtual orbitals,
as in MP, CC, or CI theories. While more accurate, these methods scale very poorly with
system size.

Density-functional theory can improve on HF using the occupied orbitals. In DFT, the
fundamental variable is the electron density,

ρ = ρ(r1) =

∫
· · ·
∫
ψ2(r1, r2, . . . , rN)dr2 · · · drN

which integrates to the total number of electrons.∫
ρ(r1)dr1 = N

1.2 Hohenberg-Kohn Theory

In conventional wavefunction theory, the potential determines the wavefunction, which de-
termines the density, as well as the energy and other properties of interest, V → ρ.

Hohenberg and Kohn proved that this mapping is unique and one-to-one, so the mapping is
reversible and ρ→ V .



6 Chapter 1. Theory Fundamentals

This means that all properties are unique functionals of the density. It is easy to write the
electron-nuclear energy, Vnuc, as a functional of the density.

Vnuc = 〈ψ|V |ψ〉

=

∫
· · ·
∫
ψ2V dr1dr2 · · · drN

=

∫
ρ(r1)V dr1

In principle, we can also write the total kinetic energy, T , and the electron-electron repulsion
energy, Vee, as functionals of the density.

T (ρ) =

〈
ψ

∣∣∣∣∣−1

2

∑
i

∇2
i

∣∣∣∣∣ψ
〉

Vee(ρ) =

〈
ψ

∣∣∣∣∣12 ∑
i 6=j

1

rij

∣∣∣∣∣ψ
〉

but we do not have simple ρ-dependent expressions for them. If we did, then the total energy
would be

E(ρ) = T (ρ) + Vnuc(ρ) + Vee(ρ)

and would be a unique functional of the density.

1.3 Kohn-Sham Theory

To get around the problem of not having expressions for T (ρ) and Vee(ρ), Kohn and Sham
considered a system of non-interacting electrons (meaning no electron-electron repulsion)
that has the same electron density as the real chemical system. The electron density is
determined from the set of real orbitals that satisfy the Schrödinger equation

−1

2
∇2ψi + V◦ψi = εiψi

where εi is the energy or orbital i and V◦ is an effective 1-e− potential. The density is

ρ =
∑
i

ψ2
i

The kinetic energy of the non-interacting system, T◦(ρ), is

T◦ = −1

2

∑
i

〈ψi|∇2|ψi〉 = −1

2

∑
i

∫
ψi∇2ψidr
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also, the classical Coulomb repulsion energy between the electrons is

J(ρ) =
1

2

∫∫
ρ(r1)ρ(r2)

r12

dr1dr2

The Kohn-Sham energy is then written as

E(ρ) = T◦(ρ) + Vnuc(ρ) + J(ρ) + EXC(ρ)

Here, EXC is called the exchange-correlation energy, which is the difference between this and
the exact energy expression involving T and Vee.

EXC(ρ) = [T (ρ)− T◦(ρ)] + [Vee(ρ)− J(ρ)]

The benefit of KS theory is that we no longer need to approximate T (ρ) and Vee(ρ). Instead,
we have exact formulae for T◦(ρ) and J(ρ) and only need to approximate EXC, which is a
much smaller contribution to the total energy.

To evaluate the KS energy, we need to obtain the orbitals, so we need an expression for V◦,
the Kohn-Sham potential. We seek to minimize the KS energy

E(ρ) = T◦(ρ) + Vnuc(ρ) + J(ρ) + EXC(ρ)

wrt variations δψi in each orbital, so that δE/δψi = 0. Considering the terms individually,

δρ

δψi
=

δ

δψi

(∑
j

ψ2
j

)
=
∑
j

(
δ

δψi
ψ2
j

)
= 2ψi

δT◦
δψi

= −1

2

∫
δ

δψi

(
ψi∇2

iψi
)
dr

= −1

2

∫ (
δψi
δψi
∇2
iψi + ψi∇2

i

δψi
δψi

)
dr

= −
∫
∇2
iψidr

δVnuc

δψi
=

∫
V
δρ

δψi
dr = 2

∫
V ψidr

δJ

δψi
=

1

2

∫∫
δρ(r1)

δψi

ρ(r2)

r12

dr1dr2 +
1

2

∫∫
δρ(r2)

δψi

ρ(r1)

r12

dr1dr2

=

∫∫
ρ(r2)

r12

dr2
δρ(r1)

δψi
dr1

= 2

∫
Velψidr1



8 Chapter 1. Theory Fundamentals

where Vel is the classical Coulomb potential is defined as

Vel =

∫
ρ(r2)

r12

dr2

δEXC

δψi
=

∫
δEXC

δρ

δρ

δψi
dr = 2

∫
δEXC

δρ
ψidr

where δEXC

δρ
is the functional derivative of EXC.

Lastly, we need to enforce orbital normalization:
∫
ψ2
i dr = 1, so we add a Langrange multi-

plier term, L.

L = −
∑
i

εi

∫
ψ2
i dr

δL

δψi
= −2εi

∫
ψidr

Then, setting δE/δψi = 0, we have

−
∫
∇2ψidr + 2

∫
V ψidr + 2

∫
Velψidr + 2

∫
δEXC

δρ
ψidr− 2εi

∫
ψidr = 0

Dividing by 2 and equating the integrands,

−1

2
∇2ψi + V ψi + Velψi +

δEXC

δρ
ψi = εiψi

which has the same form as the KS equations, so the effective KS potential, V◦ is

V◦ = V + Vel +
δEXC

δρ

and the set of KS equations can be solved self-consistently (as in HF theory) to obtain the
orbitals that minimize the energy.

1.4 The Adiabatic Connection

Understanding of the form of EXC is needed to develop approximations. We can obtain a
useful expression for EXC in terms of the “exchange-correlation hole” by a coupling-strength
integration approach called the adiabatic connection.

First, we define the pair density, Π(r1, r2). If ρ(r1) is the probability of finding an electron
in volume element dr1, then the pair density is the probability of finding a pair of electrons
simultaneously in dr1 and dr2. Note that∫

Π(r1, r2)dr2 = (N − 1)ρ(r1)
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also, the electron-electron repulsion energy (or the expectation value of any other 2-e− op-
erator) can be determined from the pair density.〈

ψ

∣∣∣∣ 1

r12

∣∣∣∣ψ〉 =

∫∫
Π(r1, r2)

r12

dr1dr2

For a Slater-determinant wavefunction, the pair density is

Π(r1, r2) =
∑
ij

ψ2
i (r1)ψ2

j (r2)−
∑
ij

ψi(r1)ψj(r2)ψj(r1)ψi(r2)δσiσj

and this integration gives the usual Coulomb and exchange integrals. The δσiσj ensures that
the exchange integral vanishes for opposite spins.

Now, we consider a series of partially interacting systems, all having the same density, where
we gradually turn on the electron-electron repulsion so that

Ĥ =
∑
i

(
−1

2
∇2
i + Vi

)
+
λ

2

∑
i 6=j

1

rij

Here, λ = 0 gives the non-interacting KS system and λ = 1 gives the real, fully interacting
system. The energy at λ = 1 is

E1 = E0 +

∫ 1

0

dEλ

E1 = T◦ + Vnuc +
1

2

∫∫
1

r12

(∫
Πλ(r1, r2)dλ

)
dr1dr2

where Πλ is the pair density at coupling strength λ. We can perform the λ integration first,
to obtain a coupling-strength average,

Πavg =

∫ 1

0

Πλdλ

Then

E1 = T◦ + Vnuc +
1

2

∫∫
Πavg(r1, r2)

r12

dr1dr2

Adding and subtracting the classical Coulomb repulsion energy

E1 = T◦ + Vnuc + J +
1

2

∫∫
1

r12

[Πavg(r1, r2)− ρ(r1)ρ(r2)] dr1dr2

and comparing with the total KS energy,

EXC =
1

2

∫∫
1

r12

[Πavg(r1, r2)− ρ(r1)ρ(r2)] dr1dr2
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Multiplying and dividing the integrand by ρ(r1),

EXC =
1

2

∫∫
ρ(r1)

r12

[
Πavg(r1, r2)

ρ(r1)
− ρ(r2)

]
dr1dr2

Πavg(r1,r2)

ρ(r1)
is called the conditional pair density and is the probability of finding an electron at

r2 if another electron is known to be at r1. The quantity in square brackets is the difference
between the conditional probability of finding an electron at r2 for the λ-averaged system
and the classical probability. This is called the exchange-correlation hole.

hXC(r1, r2) =
Πavg(r1, r2)

ρ(r1)
− ρ(r2)

EXC can be determined from the exchange-correlation hole by

EXC =
1

2

∫∫
ρ(r1)

r12

hXC(r1, r2)dr1dr2

1.5 Properties of Exchange-Correlation Holes

The exchange-correlation hole contains one electron at any reference point, r1 in a chemical
system. ∫

hXC(r1, r2)dr2 =

∫
Πavg(r1, r2)

ρ(r1)
dr2 −

∫
ρ(r2)dr2

=
1

ρ(r1)
[(N − 1)ρ(r1)]−N

= (N − 1)−N
= −1

Also, as EXC depends on r12 = |r1 − r2|, we need only consider the spherical average of the
hole around r1, so spherically symmetric hole models can be used.

The hole is usually decomposed into various spin components through the pair density.

Πavg = Παα
avg + Πββ

avg + Παβ
avg + Πβα

avg

So, the spin-dependent holes are

hσσ
′

XC(r1, r2) =
Πσσ′

avg

ρσ(r1)
− ρσ′(r2)
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and the exchange-correlation energy is a sum over spins.

EXC =
1

2

∑
σ,σ′

∫∫
ρσ(r1)

r12

hσσ
′

XC(r1, r2)dr1dr2

The spin-dependent hole is the difference in conditional probability of finding a σ′-spin
electron at r2 if a σ-spin electron is at r1. The opposite-spin (σ 6= σ′) and parallel-spin
(σ = σ′) holes have differing behaviours.

The Pauli exclusion principle tells us that there is zero probability of finding two parallel-spin
electrons at the same point in space, so

Πσσ
avg(r1, r1) = 0

This means that the value of the parallel-spin holes at r1 = r2 is

hσσXC(r1, r1) = −ρσ(r1)

Like the total XC hole, the parallel-spin hole integrates to −1 electron.∫
hσσXC(r1, r2)dr2 =

∫
Πσσ

avg(r1, r2)

ρσ(r1)
dr2 −

∫
ρσ(r2)dr2

=
1

ρσ(r1)
[(Nσ − 1)ρσ(r1)]−Nσ

= (Nσ − 1)−Nσ

= −1

The opposite-spin holes integrate to zero electrons.∫
hσσ

′

XC(r1, r2)dr2 =

∫
Πσσ′

avg(r1, r2)

ρσ(r1)
dr2 −

∫
ρσ′(r2)dr2

=
1

ρσ(r1)
[Nσ′ρσ(r1)]−Nσ′

= Nσ′ −Nσ′

= 0

The first integral here is Nσ′ . We don’t have to subtract 1 since the reference electron has a
different spin, σ.
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Sketches of the rough shapes of parallel- and opposite-spin holes are:

The XC energies and holes can be further decomposed into exchange and correlation com-
ponents.

EXC = EX + EC

There is no exchange between opposite spins, so

hαβX (r1, r2) = hβαX (r1, r2) = 0

The same properties for the parallel-spin XC hole are satisfied by the exchange hole.

hσσX (r1, r1) = −ρσ(r1)∫
hσσX (r1, r2)dr2 = −1

Exchange is a purely QM effect for fermions and does not depend on electron-electron re-
pulsion, so the exchange hole is λ independent and the full XC hole reduces to the exchange
hole in the λ = 0 limit. Conversely, the correlation holes are λ dependent.

hσσ
′

C (r1, r2) = hσσ
′

XC(r1, r2)− hσσ′

X (r1, r2)

Both the opposite- and parallel-spin correlation holes have zero normalization.∫
hσσ

′

C (r1, r2)dr2 = 0

Because the correlation holes integrate to zero while the exchange hole integrates to −1, EX

contributes much more than EC to EXC. Our primary focus going forward will be to model
EX.

1.6 Connection with Hartree-Fock Theory

In HF theory, the parallel-spin pair density for a Slater determinant is

Πσσ(r1, r2) = ρσ(r1)ρσ(r2)−
∑
ij

ψiσ(r1)ψjσ(r2)ψjσ(r1)ψiσ(r2)
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and the exchange hole is

hσσX (r1, r2) = − 1

ρσ(r1)

∑
ij

ψiσ(r1)ψjσ(r2)ψjσ(r1)ψiσ(r2)

so the exchange energy is

EX = −1

2

∑
σ

∑
i,j

∫∫
1

r12

ψiσ(r1)ψjσ(r2)ψjσ(r1)ψiσ(r2)dr1dr1

= −1

2

∑
σ

∫∫
1

r12

∣∣∣∣∣∑
i

ψiσ(r1)ψiσ(r2)

∣∣∣∣∣
2

dr1dr1

and this is the exact exchange energy written in terms of the KS orbitals.



Chapter 2

Density Functionals: the LSDA and
GGAs

2.1 The Uniform Electron Gas

The first and simplest DFT exchange functional was developed using the uniform electron
gas as a model system. Consider a cube of side length L containing N electrons. The
potential is zero within the cube and infinite without.

Inside the cube, the S.E. is

−1

2
∇2ψ = Eψ

The solutions are products of the 1D particle-in-a-box wavefunctions.

ψk =
1√
L3
ei(kx+ky+kz) =

1√
V
eik·r

with ki = 2π
L
ni, where ni = 0,±1,±2, . . . for i = x, y, z.

The values of n for the occupied states depend on N and lie within a sphere of radius nmax.
If all orbitals are doubly occupied,

2
4

3
πn3

max = N ⇒ n3
max =

3N

8π

or in terms of the wave vector, k, the values lie within a “Fermi sphere” of radius kF ,

k3
F =

(
2π

L

)3(
3N

8π

)
= 3π2N

V

14
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and using the electron density, ρ = N/V , then

kF =
(
3π2ρ

)1/3
=
(
6π2ρσ

)1/3

as ρ = 2ρσ for paired electrons.

Returning to the exchange-energy expression,

EX =
∑
σ

1

2

∫∫
ρσ(r1)

r12

hσσX (r1, r2)dr1dr2

This is often written as

EX =
∑
σ

∫
εσX(r1)dr1

where

εσX(r1) =
ρσ
2

∫
1

r12

hσσX (r1, r2)dr2

is the exchange-energy density. We seek the exchange-energy density for the uniform electron
gas.

We first consider one component of the hole – the one-body spin density matrix

∑
i

ψ∗iσ(r1)ψiσ(r2) =
1

V

∑
fermi
sphere

eik·(r2−r1)

we let s = r2 − r1 and, in the limit of a very large sphere, the sum becomes an integral, I:

I =
1

V

∫∫∫
eik·sdn

but

dk =

(
2π

L

)3

dn

so

I =
1

L3

(
L

2π

)3 ∫∫∫
eik·sdk



16 Chapter 2. Density Functionals: the LSDA and GGAs

Assuming that s is aligned along the z axis and converting to spherical coordinates,

I =
1

(2π)3

∫ kF

0

∫ π

0

∫ 2π

0

eiks cos θk2 sin(θ)dkdθdφ

=
2π

(2π)3

∫ kF

0

k2

(∫ π

0

eiks cos θ sin(θ)dθ

)
dk

=
1

4π2

∫ kF

0

k2

(
2

ks
sin(ks)

)
dk

=
1

2π2

∫ kF

0

k

s
sin(ks)dk

=
1

2π2s3
[sin(kF s)− kF s cos(kF s)]

multiplying and dividing by k3
F ,

I =
6π2ρσ

2π2k3
F s

3
[sin(kF s)− kF s cos(kF s)]

=
3ρσ
kF s

j1(kF s)

where j1(x) is a spherical Bessel function.

Recall that the exchange hole is

hσσX (r1, r2) = − 1

ρσ

∣∣∣∣∣∑
i

ψ∗iσ(r1)ψiσ(r2)

∣∣∣∣∣
2

so, replacing the term on the right with our integral, I, the spherically averaged hole is

hσσX (r1, s) = − 1

ρσ

[
3ρσ
kF s

j1(kF s)

]2

= − 9ρσ
k2
F s

2
j2

1(kF s)
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Finally, the exchange-energy density is

εX(r1) =
ρσ
2

∫∫∫
1

s
hσσX (r1, s)s

2 sin(θ)dsdθdφ

= 2πρσ

∫ ∞
0

hσσX (r1, s)sds

= −18πρ2
σ

k2
F

∫ ∞
0

j2
1(kF s)

s
ds

= −18πρ2
σ

k2
F

∫ ∞
0

j2
1(x)

x
dx

where x = kF s. From a table of definite integrals, this is 1/4, so

εX(r1) = −9πρ2
σ

2k2
F

= −3

2

(
3

4π

)1/3

ρ4/3
σ

and the exchange energy is

ELSDA
X = −3

2

(
3

4π

)1/3∑
σ

∫
ρ4/3
σ (r)dr

The approximation of using the uniform-electron-gas exchange hole to evaluate the exchange
energy is called the local spin-density approximation. It is much simpler than HF theory as
it uses only the value of the electron density at each point in space to evaluate the exchange
energy.

Uniform-electron-gas correlation holes can also be used to obtain the correlation energy, but
no closed-form expression exists – parameterizations to Quantum Monte Carlo results for
UEG correlation energies are used instead.

The LSDA typically underestimates exchange energies and overestimates both correlation
energies and bond energies – more sophisticated models are needed.

2.2 Beyond the Local Spin-Density Approximation

In real chemical systems, the density is not uniform, so the first improvement on the LSDA
was to add a gradient term. The exchange energy density now depends on both the den-
sity and density gradient, ∇ρ. These types of functionals are called generalized gradient
approximations.

EGGA
X =

∑
σ

∫
εX(ρσ,∇ρσ)dr
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To motivate the form of the gradient correction, consider dimensional analysis. The dimen-
sions of ρ are 1

volume
= 1

distance3
and of ∇ρ are 1

distance4
. All of the KS energy terms should

have dimensions of 1
distance

. This is most easily seen from the Vnuc and EX terms:∫
ρ(r)Vnucdr :

(
1

distance3

)(
1

distance

)
distance3 =

1

distance∑
σ

Cx

∫
ρ4/3
σ dr :

(
1

distance3

)4/3

distance3 =
1

distance

So, the simplest gradient correction is

EX = ELSDA
X − β

∑
σ

∫
(∇ρσ)2

ρ
4/3
σ

dr

as the dimensions of the last term are(
1

distance4

)2 (
distance3

)4/3
distance3 =

1

distance

However, there are significant problems with this expression as the exchange potential (i.e.
the functional derivative) diverges asymptotically in the density tails, far from an atomic or
molecular system.

2.3 Functional Derivatives

To perform KS DFT calculations in practise, we need to evaluate the functional derivative
of the XC energy in order to optimize the KS orbitals.

For a functional

F (ρ) =

∫
f(ρ,∇ρ, . . .)dr

if ρ is changed by an infinitesimal variation, δρ, then the first-order change in F is

dF =

∫
δF

δρ
δρ

where δF
δρ

is the functional derivative.

To obtain δF
δρ

, replace ρ everywhere in the integrand, f(ρ,∇ρ, . . .) by ρ + δρ and expand to
first order in δρ. Then manipulate the result until δρ is factored out of the integral for dF .
The function multiplying δρ in the integral is the functional derivative.
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For the LSDA,

ELSDA
X (ρσ) =

∫
cxρ

4/3
σ dr

ELSDA
X (ρσ + δρσ) =

∫
cx(ρσ + δρσ)4/3dr

To first order in δρ,

(ρσ + δρσ)4/3 = ρ4/3
σ +

4

3
ρ1/3
σ δρσ + . . .

ELSDA
X (ρσ + δρσ) =

∫
cx

(
ρ4/3
σ +

4

3
ρ1/3
σ δρσ

)
dr

= ELSDA
X (ρσ) +

∫
cx

4

3
ρ1/3
σ δρσdr

So, examining the integrand,
δELSDA

X

δρσ
=

4

3
ρ1/3
σ

Functional derivatives of GGAs are more complicated to evaluate, as derivative operations
on δρ must be removed using integration by parts, Green’s theorems, etc. For our simple,
proposed GGA, it can be shown that

δEX

δρσ
=

4

3
ρ1/3
σ −

4

3
β

(∇ρσ)2

ρ
7/3
σ

+ 2β
∇2ρσ

ρ
4/3
σ

Recall that the Laplacian operator, in spherical coordinates is

∇2f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2

=
1

r

∂2

∂r2
(rf) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2

Assuming an exponential spin density, ρσ = Ae−ar, as is usually seen in chemistry, the
density gradient is

∇ρσ =
∂

∂r
ρσ = −Aae−ar

and the Laplacian of the density is

∇2ρσ =
1

r2

∂

∂r

(
r2∂ρσ
∂r

)
=

1

r2

(
2r
∂ρσ
∂r

+ r2∂
2ρσ
∂r2

)
=
∂2ρσ
∂r2

+
2

r

∂ρσ
∂r
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The last two terms in the functional derivative are then

(∇ρσ)2

ρ
7/3
σ

=
A2a2e−2ar

A7/3e−7ar/3
=

a2

A1/3
ear/3

∇2ρσ

ρ
4/3
σ

=
∂2ρσ
∂r2

+ 2
r
∂ρσ
∂r

ρ
4/3
σ

=
Aa2e−ar + 2

r
A(−a)e−ar

A4/3e−4ar/3
= A−1/3

(
a2 − 2a

r

)
ear/3

In the exponential asymptote, consider the behaviour as r →∞,

lim
r→∞

ear/3 =∞

so the functional derivative diverges exponentially. We need an alternative form for a GGA
that is still dimensionally correct, but prevents this divergence.

2.4 The PBE (or B86a) Functional

To prevent the asymptotic divergence, a dimensionless factor can be introduced

EB86a
X = ELSDA

X −
∑
σ

β

∫
(∇ρσ)2

ρ
4/3
σ

(
1 + γ

(∇ρσ)2

ρ
8/3
σ

)−1

dr

where (∇ρσ)2

ρ
8/3
σ

is dimensionless, but will become large in the exponential density tails to prevent

asymptotic divergence.

This functional is more commonly written in terms of χσ, the reduced or dimensionless
density gradient:

χσ =
|∇ρσ|
ρ

4/3
σ

EB86a
X = ELSDA

X −
∑
σ

β

∫
ρ4/3
σ

χ2
σ

1 + γχ2
σ

dr

In this form, it is clear that the gradient term is an “enhancement” to the LSDA. GGAs are
often rewritten in terms of an enhancement factor, F (χσ),

EGGA
X = −

∑
σ

∫
cxρ

4/3
σ F (χσ)dr = −

∑
σ

∫
εLSDA

X (ρσ)F (χσ)dr

For the case of the B86a functional,

F (χσ) = 1 +
β

cx

χ2
σ

1 + γχ2
σ
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This functional has the exact same form as the well-known PBE functional, which was
proposed 10 years later based on applying chosen constraints to the enhancement factor,
with only slight differences in the values of the β and γ parameters.

This functional recovers the correct behaviour of the enhancement factor in the zero-gradient
limit (UEG), but not in the large-gradient limit.

The PBEsol functional also shares this functional form, but with significantly different pa-
rameter values, chosen to recover the χ → 0 limit of the exhancement factor for a slowly-
varying electron gas:

lim
χσ→0

FX(χσ) = 1 +
10

81
χ2
σ + . . .

This worsens the performance relative to PBE for finite atoms and molecules, but improves
performance for solids, where there are no regions with large density gradients. PBEsol can
be viewed as intermediate between PBE and LSDA. It tends to give good performance for
inorganic solids, where the overbinding tendency of the exchange function offsets the lack of
London dispersion.

2.5 The PW86 and B86b Functionals

Two additional GGA functionals were proposed with the correct behaviour of the enhance-
ment factor in the large-gradient limit of

lim
χσ→∞

FX(χσ) ∼ χ2/5
σ

In PW86
F (χσ) =

(
1 + aχ2

σ + bχ4
σ + cχ6

σ

)1/15

and in B86b

F (χσ) = 1 +
β

cx

χ2
σ

(1 + γχ2
σ)4/5

Both of these functionals are more accurate for exchange due to the improved large-gradient
behaviour. B86b is more robust than PW86, as the 1

15
power makes SCF convergence more

difficult. These functionals are the most reliable for exchange repulsion in vdW complexes.

2.6 The B88 Functional

Another GGA was developed to satisfy the exact asymptotic behaviour of the exchange-
energy density. When an electron is far away from an atom or molecule, the exchange hole
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remains centered on the system such that the reference electron is interacting with a +1 ion.
Thus

lim
r→∞

εσX = −ρσ
2r

However, for the LSDA or B86a/PBE functionals, this limit is −ρ4/3
σ .

B88 was designed to recover the exact limit and has

F (χσ) = 1 +
βχ2

σ

1 + 6βχσarcsinh(χσ)

In the r →∞ limit, the gradient term of the exchange-energy density is

lim
r→∞

FB88(χσ) = lim
r→∞

[
−βρ4/3

σ

χ2
σ

1 + 6βχσarcsinh(χσ)

]
= lim

r→∞

[
−βρ4/3

σ

χ2
σ

βχσ ln(2χσ)

]

since arcsinh(x) = ln(x+
√
x2 + 1) and limx→∞ arcsinh(x) = limx→∞ ln(2x) = ln x.

For an exponential density,

ρσ = Ae−ar ∇ρσ = −Aae−ar χσ = aA−1/3ear/3

lim
r→∞

FB88(χσ) = lim
r→∞

[
−βρ4/3

σ

a2A−2/3e2ar/3

6βaA−1/3ear/3 ln(ear/3)

]
= lim

r→∞

[
−ρ4/3

σ

aA−1/3ear/3

6(ar/3)

]
= lim

r→∞

[
−ρ4/3

σ

ρ
−1/3
σ

2r

]
= −ρσ

2r

So this functional has the correct limit.

B88 is the most accurate GGA for atomic exchange energies and has only one parameter,
β = 0.0042. It is the most popular in chemistry, while PBE is the most popular in physics.

There is still room to improve further on GGAs if the desirable limiting properties of B88
and B86b could be combined. However, GGAs are limited as they use local models of the
exchange hole, depending only on ρσ and ∇ρσ. For significantly greater accuracy, we need
to go beyond GGAs.
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2.7 The PBE Correlation Functional

Correlation functionals tend to have more complicated forms than exchange functionals.
However, they still follow the same hierarchy, with the simplest being LSDA correlation,
obtained from parameterization of the UEG correlation energy.

Several GGA correlation functionals have been developed to improve on the LSDA, with the
most popular being LYP and PBE.

Like GGA exchange functionals, GGA correlation functionals are based on the uniform
electron gas limit, multiplied by an enhancement factor:

EGGA
C =

∫
εLSDA

C (ρα, ρβ)FC(ρα, ρβ,∇ρα,∇ρβ)dr

The popular PBE correlation functional uses the total electron density,

ρ = ρα + ρβ,

the total density gradient,
∇ρ = ∇ρα +∇ρβ,

and the relative spin polarization,

ζ =
ρα − ρβ
ρα + ρβ

,

as central ingredients. The relative spin polarization is then used to define a spin-scaling
factor:

φ =
1

2

[
(1 + ζ)2/3 + (1− ζ)2/3

]
The correlation energy is

EPBE
C =

∫ [
εLSDA

C +H(ρ,∇ρ, φ)ρ
]
dr

where

H = γφ3 ln

[
1 +

β

γ
t2
(

1 + At2

1 + At2 + A2t4

)]
,

A =
β

γ

[
exp

(
−ε

LSDA
C

γφ3ρ

)
− 1

]−1

β and γ are constants and

t =
∇ρ

2(3π2)1/3φρ4/3

is a reduced density gradient (although a different one from χ). This PBE form was con-
structed to obey three known limits: t→ 0, t→∞, and the high-density limit.
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2.8 Numerical Integration in DFT

In practise, performing a DFT calculation follows a similar procedure as a HF calculation.
An initial guess for the KS orbitals in obtained from linear combinations of atomic orbitals
using Generalized Hückel theory, or some similar semi-empirical approach. From this initial
guess, we can solve self-consistently for the optimum KS orbitals that minimize the energy
using the KS equations.

−1

2
∇2ψi +

(
Vnuc + Vel +

δEXC

δρ

)
ψi = εiψi

This is done in the same way as the Roothan-Hall scheme, using repeated matrix diago-
nalization. All of the integrals that form the matrix elements can be evaluated easily using
Gaussian basis functions, except for integrals involving the XC functional or potential, which
require numerical integration on a grid of points.

In numerical integration, the integral can be evaluated approximately as a summation

I =

∫
F (r)dr ≈

∑
i

AiF (ri)

where the ri are the integration grid points and the Ai are the integration weights.

Because the density changes rapidly near atomic nuclei, we cannot use cubic grids in Carte-
sian coordinates. Instead, we need to partition the molecule into discrete atomic regions
so that numerical integration can be carried out in each region using spherical coordinates,
with the nucleus as the origin. This is done by defining weight functions, wn, assigned to
each nucleus, n, such that the weights sum to 1 at each grid point:∑

n

wn(ri) = 1

Each wn(r) = 1 at nucleus n and decreases smoothly to zero at all other nuclei.

The weights are then used to partition the integrand

F (r) =
∑
n

Fn(r) =
∑
n

wn(r)F (r)

and this reduces the integral to a sum of single-center integrals

I =
∑
n

In =
∑
n

(∫
wn(r)F (r)dr

)
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In DFT calculations, the weights (“Becke weights”) are obtained from smoothed Voronoi
polyhedra. However, in analysis of properties of the electron density, other definitions are
common, such as Hirshfeld partitioning, which uses free atomic densities, and Bader parti-
tioning, which uses density gradients.

For each single-center integral, In, we use spherical coordinates

In =

∫∫∫
wn(r)F (r)r2 sin θdrdθdφ

where the angular integration is carried out using Lebedev quadratures. The radial integra-
tion requires mapping the interval −1 < x < 1 used in standard Gaussian quadratures to
0 < r <∞, which is done using the transform

r = rm
1 + x

1− x

where rm is a parameter corresponding to the midpoint of the integration interval.

To ensure we have a balance of points near the nuclei and points in the bonding regions or
density tails, rm is taken as half the Bragg-Slater radius (obtained from internuclear distances
in crystals), except for H, where the 1/2 factor is not applied.

Increasing the size of the radial and angular meshes increases numerical precision in evalu-
ating the integrals, but also increases the computational time. Standard grids are (75,302),
meaning 75 radial points and 302 angular points per atom. Finer grids, such as (99,590) or
larger, are needed for many meta-GGA functionals,where the enhancement factors are not
well-behaved numerically.



Chapter 3

Density Functionals: Meta-GGAs and
Hybrids

3.1 The BR Exchange Meta-GGA

Functionals that contain τσ, and possibly ∇2ρσ, are called meta-GGAs. The first exchange
meta-GGA was the Becke-Roussel (BR) functional.

In the BR model, we consider a different reference system from the UEG. For a hydrogen
atom, we know that the exchange hole is an exponential function that remains centered on
the nucleus, away from the reference point.

This model of the hole can be used for other systems if we impose known constraints to fit
the parameters (A, a, b). The first imposed constraint is that the hole must be normalized
to −1 electron so A = a3/8π.

The exchange energy depends only on the spherical average of the hole about the reference
point

hXσ(r, s) =
a

16πbs

[
(a|b− s|+ 1)e−a|b−s| − (a|b+ s|+ 1)e−a|b+s|

]
The Taylor expansion of this hole about the reference point it

hXσ(r, s) = −Ae−x − Aa2

6

(
1− 2

x

)
e−xs2 + . . .

26



3.1. The BR Exchange Meta-GGA 27

where x = ab. At the reference point (s = 0), the hole must obey

hXσ(r, 0) = −ρσ(r)

so from the first term in the expansion,

−Ae−x = −ρσ

a3e−x = 8πρσ

The last constraint is that the second term (the curvature) in the Taylor expansion of the
model hole must equal the curvature of the exact exchange hole:

hXσ(r, s) = −ρσ −Qσs
2 + . . .

where

Qσ =
1

6

(
∇2ρσ − 2Dσ

)
,

and
Dσ = τσ − τWσ

is the difference between the exact kinetic-energy density, τσ =
∑

i |∇ψi|2, and the von
Weizss̈cker approximation:

τWσ =
1

4

(∇ρσ)2

ρσ

Thus,
Aa2

6

(
1− 2

x

)
e−x = Qσ

Replacing A,
a2ρσ

6

(
1− 2

x

)
= Qσ

multiplying both sides by xe−2x/3,(
a2e−2x/3

)
· ρσ

6
(x− 2) = Qσxe

−2x/3

using the density constraint,

(8πρσ)2/3 · ρσ
6

(x− 2) = Qσxe
−2x/3

2

3
π2/3(x− 2)ρ5/3

σ = Qσxe
−2x/3

2

3
π2/3ρ

5/3
σ

Qσ

=
x

x− 2
e−2x/3
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This 1D non-linear equation can be solved for x. Then, from the density constraint,

a3e−x = 8πρσ

x3e−x = 8πρσb
3

b3 =
x3e−x

8πρσ

and so the values of x, b, and a can be obtained for each reference point.

Lastly, the exchange energy is

EX = −1

2

∑
σ

∫∫
ρ(r)

s
hXσ(r, s)drds

and performing the integration of the spherically averaged hole over s,

EBR
X = −1

2

∑
σ

∫
ρσ
b

(
1− e−x − 1

2
xe−x

)
dr

This functional is much more complex than a GGA as it contains the additional ingredients
of τσ and ∇2ρσ (as well as the non-linear equation).

3.2 The B88 Correlation Meta-GGA

Real-space models of correlation holes can also be used to develop opposite- and parallel-spin
meta-GGA correlation functionals.

Returning to the adiabatic connection, we can Taylor expand the spherically averaged λ-
dependent holes around the reference point.

For opposite spins:
hαβCλ(r, s) = (Bαβ − ρβ) + λBαβs+ . . .

and for parallel spins:

hσσXCλ(r, s) = −ρσ +

(
Bσσ −

1

6
∇2ρσ

)
s2 +

λ

2
Bσσs

3 + . . .

where the B’s are position-dependent coefficients.

We also know the Taylor expansion of the exchange hole:

hX(r, s) = −ρσ −
1

6

(
∇2ρσ − 2Dσ

)
s2 + . . .
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which is λ independent. Subtracting this from the XC hole gives the expansion of the
parallel-spin correlation hole:

hσσCλ(r, s) =

(
Bσσ −

1

3
Dσ

)
s2 +

λ

2
Bσσs

3 + . . .

To develop a real-space model, we use functions that recover these expansions for the cusp
conditions, and change sign when s is equal to some correlation length zσσ or zαβ:

hαβCλ(r, s) =
λ(s− zαβ)ρβ

1− λzαβ
F (γαβs)

hσσCλ(r, s) =
λs2(s− zσσ)Dσ

6(1− λzσσ/2)
F (γσσs)

where F (γs) is a suitable damping function, required to damp the hole to zero at large s,
with quadratic behaviour at small s:

lim
s→0

F (γs) = 1− aγ2s2 + . . .

Possible functions considered were F (x) = sech(x), F (x) = (1 + x)e−x, and F (x) = e−x
2
.

Integrating these correlation-hole expressions gives forms for the correlation energies:

Eαβ+βα
C = −I1

∫
ραρβz

2
αβ

[
1− ln(1− zαβ)

zαβ

]
dr

Eσσ
C = I2

∫
ρσDσz

4
σσ

[
1− 2

zσσ
ln
(

1 +
zσσ
2

)]
dr

The particular values of the integrals I1 and I2 depend on the functional form chosen for
F (γs) and were assigned final values of -0.8 and -0.01, respectively.

The remaining term is the correlation length, z. This taken to be proportional to the sum
of exchange-hole (or Fermi) radii (RF ), since this should be a good measure of the length
scale for electron-electron interactions:

zσσ′ = cσσ′(Rσ
F +Rσ′

F )

The mean inverse radius of the exchange hole is given by the exchange potential:

Uσ
X =

∫
1

s
|hσσX (r, s)|dr = 〈s−1〉

Thus, the correlation length is taken to be

zσσ′ = cσσ′(|Uσ
X|−1 + Uσ′

X |−1)
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The exchange potential is determined from the particular exchange functional as

Eσ
X = −1

2

∫
ρσU

σ
Xdr

which shows a connection between the exchange and correlation terms.

If we take our exchange functional as the LSDA, then

Eσ
X = −3

2

(
3

4π

)1/3 ∫
ρ4/3
σ dr

so our mean Fermi hole radius is

Rσ
F = −1

3

(
3

4πρσ

)−1/3

The parameters cσσ′ were then fit to minimize errors in LSDA correlation energies. The
resulting values of cαβ = 0.62 and cσσ = 1.11 indicate the opposite-spin correlation is shorter
in range than parallel-spin correlation. This is reasonable since exchange already serves to
separate parallel-spin electrons.

This correlation model has been paired with both the B88 and BR exchange functionals,
using those particular exchange potentials to determine the correlation lengths.

3.3 Chemical Bonding Descriptors: ELF and LOL

Two functions involving the kinetic-energy density have been successfully used to visualize
electron localization.

The first is the electron localization function (ELF):

ELF =

[
1 +

(
Dσ

DUEG
σ

)2
]−1

where

DUEG
σ = τUEG

σ =
3

5
(6π2)2/3ρ5/3

σ

is the uniform electron gas kinetic-energy density.

It can be shown that Dσ is the leading-order term in the Taylor expansion of the spherically
averaged conditional pair density:

Π(r, s)

ρσ(r)
=

1

3
Dσs

2 + . . .
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So smaller Dσ means that there is a small probability of finding a second same-spin electron
near the reference point, r.

Thus, there is an inverse relationship between Dσ and electron localization – small Dσ

means that the reference electron is highly localized, while large Dσ means that the reference
electron is delocalized.

The ratio Dσ/D
UEG
σ is used to give a dimensionless quantity and to express the extent of

electron localization relative to the uniform electron gas.

Because 0 ≤ Dσ/D
UEG
σ < ∞, the inverse form is used to map the ELF values onto the

interval 0 ≤ ELF ≤ 1.

Values of ELF near 1 correspond to highly localized electrons, while values of 0.5 correspond
to a UEG-like electron distribution. Typically ELF isosurfaces of 0.8 are used to visualize
chemical bonding and electron lone pairs.

An alternative chemical bonding descriptor is the localized orbital locator (LOL):

LOL =
tσ

1 + tσ

where
tσ = τUEG

σ /τσ

Ideally, the ratio of exact to UEG exchange-energy densities would be used instead to describe
electron localization, but the exact exchange-energy density is expensive to compute for
large molecules and solids, so the ratio of exact to UEG kinetic-energy densities is used to
approximate it.

Because 0 ≤ tσ < ∞, the form of LOL is chosen to map it onto the interval 0 ≤ LOL ≤ 1.
As for ELF, high values of LOL indicate highly localized electrons and isosurfaces can be
plotted to visualize chemical bonding and electron lone pairs.

3.4 The B95 Correlation Meta-GGA

Meta-GGA functionals (other than BR and B88C) tend to more closely resemble GGAs,
starting from the uniform electron gas, rather than using real-space models of exchange or
correlation holes. Ratios involving τσ, like Dσ/D

UEG
σ or tσ as used in ELF and LOL, are

used in the enhancement factors.

The kinetic-energy term can appear in only the correlation functional, or in both exchange
and correlation.
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One example is the B95 correlation functional, where the UEG correlation energy is decom-
posed into opposite- and parallel-spin terms:

ELSDA
C,opp = ELSDA

C (ρα, ρβ)− ELSDA
C (ρα, 0)− ELSDA

C (ρβ, 0)

ELSDA
C,par = ELSDA

C (ρα, 0) + ELSDA
C (ρβ, 0)

To add in gradient dependence, we use an enhancement factor, similar to PBE. For opposite
spins:

EB95
C,opp =

∫
1

1 + copp(χ2
α + χ2

β)
εLSDA

C,oppdr

For parallel spins:

EB95
C,par =

∑
σ

∫
1

(1 + coppχ2
σ)2

Dσ

DUEG
σ

εLSDA
C dr

The ratio of Dσ/D
UEG
σ is used as a self-interaction correction.

Dσ = 0 in one-electron regions, where the spin density is dominated by a single orbital, ψ:

Dσ = τσ −
1

4

(∇ρσ)2

ρσ

= (∇ψ)2 − 1

4

(∇ψ2)2

ψ2

= (∇ψ)2 − 1

4

(2ψ∇ψ)2

ψ2

= (∇ψ)2 − (∇ψ)2

= 0

The ratio Dσ/D
UEG
σ scales the UEG correlation energy to ensure that it vanishes for 1-

electron systems, where there should be no correlation.

The drawback with this form is that the parallel-spin correlation energy density will diverge
in intermolecular regions of van der Waals dimers. In such regions, both ρσ and ∇ρσ → 0
and

lim
ρσ ,∇ρσ→0

Dσ

DUEG
σ

∼ τσ

ρ
5/3
σ

=∞

This necessitates the use of extremely fine integration grids when using this (or other sim-
ilar) meta-GGAs to obtain smooth potential energy surfaces and avoid spurious negative
vibrational frequencies.
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3.5 Other Meta-GGA Functionals

Other meta-GGAs, including the popular TPSS and M06-L functionals, use ratios of τWσ /τσ,
τσ/τ

UEG
σ , and Dσ/τσ to scale both the exchange and correlation terms.

Most meta-GGAs show similar grid sensitivity to B95, although this can be avoided with
careful choice of the τ -dependence. Notably, the BMK functional uses the ratio:

wσ =
DUEG
σ − τσ

DUEG
σ + τσ

which is smoothly varying in intermolecular regions and does not show grid sensitivity.

Meta-GGAs are generally more complicated in form than GGAS, and many (like M06-L)
are highly empirical. Fitting can lower errors on common benchmarks, but typically causes
larger errors in absolute exchange and correlation energies.

For example, the M06-L meta-GGA uses

EM06−L
X =

∑
σ

∫
f(χσ, yσ)εLSDA

X dr

EM06−L
C,par =

∑
σ

∫
f(χσ, yσ)Dσε

LSDA
C,par dr

EM06−L
C,opp =

∫
f(χαβ, yα,β)εLSDA

C,oppdr

with

yσ =
3

5
(6π2)2/3

(
τσ
τUEG
σ

− 1

)
where χ2

αβ = χ2
α + χ2

β and yαβ = yα + yβ.

The form of the enhancement factors involves 6 empirical parameters that are fit to distinct
values for each of the exchange and correlation terms:

f(χσ, yσ) =
a1

1 + a6(χ2
σ + yσ)

+
a2χ

2
σ + a3yσ

[1 + a6(χ2
σ + yσ)]2

+
a4χ

4
σ + a5χ

2
σyσ

[1 + a6(χ2
σ + yσ)]3

This leads to over fitting, with oscillations in the forms of the enhancement factors.

Overall, meta-GGAs offer only marginal improvements on GGAs, and both suffer from
delocalization error. To obtain significantly better accuracy than GGAs, we must include
exact (HF) exchange.
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3.6 Hybrid Functionals

Returning to the adiabatic connection, we write

EX,σ =

∫ 1

0

Uλ
Xσdλ

where we are explicitly showing the λ (coupling-strength) dependence of the exchange po-
tential energy, UX. Recall that λ switches on the 1/r12 Coulomb repulsion between the
electrons, so λ = 0 corresponds to the non-interacting KS reference system and λ = 1 to the
fully interacting real system.

A first approximation to the integral is a linear interpolation

EXσ = aUλ=0
Xσ + (1− a)Uλ=1

Xσ

The λ = 0 limit corresponds to the exact exchange energy of the Slater determinant of
the KS orbitals, EHF

Xσ . At λ = 1, we can use the LSDA or, much more commonly, a GGA
functional.

EGGA
Xσ =

∫
εXσ(ρσ,∇ρσ)dr

Combining these gives a hybrid functional,

Ehybrid
Xσ = aEHF

Xσ + (1− a)EGGA
Xσ

Typically, a = 20− 50% depending on the functional.

These hybrid functionals give an accuracy that far surpasses either HF or GGAs alone and
are the most consistently accurate density functionals used in chemistry.

The GGA correlation functionals, in particular LYP and PBE, are used to construct hybrid
XC functionals.

Meta-GGA correlation functionals are also possible, but are less commonly used due to their
greater complexity and numerical sensitivity.

A simple 1-parameter hybrid functional involving B88 exchange and PBE correlation is

EXC = aEHF
X + (1− a)EB88

X + EPBE
C

with a = 0.2.

3-parameter hybrids are also common, where added empiricism can give better thermochem-
istry. The original 3-parameter hybrid has the form

EXC = aEHF
X + (1− a)ELSDA

X + b∆EGGA
X + ELSDA

C + c∆EGGA
C

B3LYP uses this form with the B88 exchange functional and LYP correlation functional.
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3.7 B97 and the Limits of Parameterization

How far should one go with introducing empirical fit parameters to density functionals? To
assess this, consider a general functional form

Ehybrid
XC = aEHF

X + (1− a)EGGA
X + EGGA

Cσσ + EGGA
Cαβ

with

EGGA
X =

∑
σ

∫
εLSDA

Xσ gXσ(χ2
σ)dr

EGGA
Cσσ =

∑
σ

∫
εLSDA

Cσσ gCσσ(χ2
σ)dr

EGGA
Cαβ =

∫
εLSDA

Cαβ gCαβ(χ2
avg)dr

where χ2
avg = 1

2

(
χ2
α + χ2

β

)
.

Each of the g’s takes the form of a polynomial series

g =
m∑
i=0

ciU
i

where the GGA enhancement factor has the same form as in B86a/PBE

UXσ =
γXσχ

2
σ

1 + γXσχ2
σ

UCσσ =
γCσσχ

2
σ

1 + γCσσχ2
σ

UCαβ =
γCαβχ

2
avg

1 + γCαβχ2
avg

The γ’s are fixed, using reference atomic exchange and correlation energies. The c’s are
linear parameters fit to minimize errors in thermochemical reference data.

No significant improvement occurs from m = 2 to m = 3 (and only minimal improvement
from m = 1 to m = 2). Also, unphysical oscillatory character in plots of the g(χ) enhance-
ment factors occurs starting at m = 4. This demonstrates that we should stop at first or
second order in this expansion, with at most 10 empirical parameters.

However, since this work, many even more heavily parameterized hybrid meta-GGA func-
tionals (like M06 and M06-2X) have been proposed with > 50 parameters and clear oscil-
latory behaviour in the enhancement factors, indicating overfitting. The overfitting causes
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improved statistical performance for the fit sets, but these functionals do not represent a
significant improvement over 1-3 parameter hybrids and cannot be recommended.

3.8 Range-Separated Hybrid Functionals

Hybrid functionals use a global mixing of HF and GGA exchange. Could better accuracy
be obtained with a position-dependent mixing? One way to do this is to split the Coulomb
operator into short- and long-range components using the error function.

1

r12

=
1− erf(µr12)

r12

+
erf(µr12)

r12

short range long range

Then, the individual components replace 1/r12 in the HF or GGA exchange-energy inte-
grands.

Usually the long-range component is treated with exact exchange, to ensure the correct
limiting behaviour of the exchange hole, and the short-range component is treated with
GGA exchange, recovering the UEG limit.

ELR
X = −1

2

∑
σ

∑
ij

∫∫
erf(µr12)

r12

ψiσ(r1)ψjσ(r2)ψjσ(r1)ψiσ(r2)dr1dr2

ESR
X = −1

2

∑
σ

∫∫
[1− erf(µs)]

ρσ(r)

s
hGGA

Xσ (r, s)drds

The LC-BLYP functional (the first range-separated hybrid) uses B88 exchange. Subsequent
range-separated hybrids, like LC-ωPBE, use GGAs developed specifically for range separa-
tion. The base GGA is recovered in the µ = 0 limit.

These range-separated functionals are more computationally expensive than GGAs or global
hybrids. They typically give improved performance in cases where delocalization error is
important, but the optimum µ parameter is highly system dependent, preventing consistent
accuracy across applications.

Note that the HSE functional, commonly used in solid-state calculations, reverses the typical
convention, treating the short-range component with exact exchange and the long-range
component with GGA exchange, to reduce the computational cost of performing hybrid
DFT calculations.
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3.9 Delocalization Error

The DFT methods described so far perform
quite well for most thermochemistry, with
errors in the G3 atomization energies of ∼ 10
kcal/mol for GGA and 2 − 5 kcal/mol for
hybrids. However, they can give very large
errors in some cases – the most dramatic is
for the simplest chemical system, H+

2 .

HF is exact here as it is a 1-electron system, but the LSDA or GGA functionals fail spec-
tacularly in the dissociation limit. To understand why, consider the form of the exchange
hole.

The exact exchange hole in H+
2 integrates to −1 electron overall, with −1

2
e− around each

nucleus, regardless of the reference point.

Alternatively, the LSDA or GGA hole is normalized to −1 electron, but is localized about
the reference point.

vs.

So, we are effectively double-counting the exchange energy when the nuclei are far apart,
near the dissociation limit. This problem affects any system with distant, fractional charges.
This is often illustrated by plots of the energy versus charge for an atom or molecule.

The exact energy should be piece-
wise linear, which can be motivated
by considering successive ionization
of a large ensemble of non-interacting
atoms or molecules.
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However, the LSDA/GGAs preferentially stabilize fractional charges due to the incorrect hole
normalization. Alternatively, HF destabilizes fractional charges due to neglect of correlation.

This behaviour explains errors in orbital energies (or band structure) seen with GGAs. The
HOMO energy is the sided derivative for removing charge:

εHOMO =
∂−E

∂q

With GGAs, this slope is too shallow and the HOMO is too high in energy.

The LUMO energy is the sided derivative for adding charge:

εHOMO =
∂+E

∂q

With GGAs, this slope is too steep and the LUMO is too low in energy.

This also results in narrowing of the band gap in solids, and incorrect prediction of some
semiconductors as metallic.

For some molecular dimers, transfer of electrons from the destabilized HOMO of one molecule
to the overstabilized LUMO of the other molecule causes excessive charge transfer and
overbinding of the dimer.

Hybrids or range-separated hybrids have intermediate behaviour and consequently reduce
delocalization error, but the optimal a or µ needed to recover straight-line behaviour is
(a) highly system dependent and (b) very different from the optimal value for accurate
thermochemistry in most applications.

Delocalization error is likely the largest outstanding problem in DFT.


