End

An Introduction to Density-Functional Theory for Experimentalists

Erin R. Johnson

http://schooner.chem.dal.ca

Partnership between theory and experiment

Simulating chemical processes computationally can help interpret and inform experiment.

What can theory predict?

The aim of quantum chemistry is to accurately predict molecular and materials properties from first principles.

- molecular or crystal geometries
- thermodynamic quantities
- mechanisms and chemical kinetics
- spectroscopic quantities
- mechanical properties

What details do you need to include?

When reading a theory section, you should be able to find enough detail for the calculation to be reproducible.

This should include:

- Geometry details for the system under study
- The choice of density functional (and dispersion correction)
- Basis set or plane-wave/pseudopotential details
- Any other specific options

Crystals

Introduction

Geometries of known crystals are available through three databases:

Geometry

Crystallography Open Database

http://crystallography.net/doc

Cambridge Structure Database

http://ccdc.cam.ac.uk

Inorganic Crystal Structure Database

http://icsd.products.fiz-karlsruhe.de

Report the structure code/origin of each cif file.

Surfaces

Geometry

0000000

Introduction

Must specify surface termination and any reconstruction – include geometry in the SI.

Molecules

Introduction

Optimized xyz coordinates for all structures should appear in the SI.

Also include charge/multiplicity when it is not obvious.

```
Ni 0.342223 0.007233 -1.836928
P = 1.222833 = 0.358973 = 0.504922
P 1.955490 0.028431 -0.512822
C -2.187686 1.149487 0.155336
C = 0.249508 = 1.048898 = 0.930789
C = 2.804241 = 1.416203 = 0.614098
C 3.612158 -0.783027 -0.608310
C 1.162462 -0.892194 0.904904
C 2.344338 1.682090 0.208011
C = 3.007420 \ 0.802391 \ 1.399961
0 - 3.098163 1.529544 - 0.903170
C -1.270429 2.338465 0.373163
C -0.824919 -1.777121 1.984884
C = 3.660874 = 0.725084 = 1.686323
0 - 3.567367 - 1.450836 0.616926
```


What types of calculations are possible?

Consider a potential energy surface (PES):

Intrinsic coordinate

Calculation types — single-point energy

Intrinsic coordinate

Calculation types — geometry optimization

Calculation types — frequencies

Other calculation types

Detailed analysis of a particular property can also be done as part of a single-point energy calculation.

Charge analysis

- Energy decomposition
- ELF and NCI plots
- Band structures
- Density of states
- Excitation energies
- NMR shieldings

Atomic orbitals

Introduction

Take linear combinations of atomic orbitals to form molecular orbitals:

$$MO = c_1 AO_1 + c_2 AO_2 + \ldots + c_n AO_n = \sum_{i=0}^{n} c_i AO_i$$

$$\phi = c_1 \chi_1 + c_2 \chi_2 + \ldots + c_n \chi_n = \sum_{i=0}^n c_i \chi_i$$

Then fill the MOs with electrons.

Molecular orbitals

Electron density and energy

The occupied MOs generate the 3D electron density, ρ .

$$\rho(x, y, z) = \sum_{i} \phi_{i}^{2}(x, y, z)$$

The energy is written as a functional of the density:

$$E = E[\rho(x, y, z)]$$

Comp Chem and DFT

What is the challenge?

Introduction

Electrons cannot be treated as classical, independent particles.

VS.

Density-functional theory (DFT)

The DFT energy is written as a sum of terms:

$$E = T_0(\rho) + V(\rho) + J_0(\rho) + E_{XC}(\rho)$$

- T₀ is the kinetic energy of the electrons
- V is the electron-nuclear potential energy
- J₀ is the classical electron-electron repulsion energy
- \bullet $E_{\rm XC}$ is the exchange-correlation energy

Exc is the difference between the classical and quantum-mechanical electron-electron interactions.

Density-functional approximations (DFAs)

The DFT energy is written as a sum of terms:

$$E = T_0(\rho) + V(\rho) + J_0(\rho) + E_{XC}(\rho)$$

The forms of T_0 , V, and J_0 are known and straightforward to compute.

The exact form of $E_{\rm XC}$ is unknown and there is no systematic route to obtain it – very many DFAs have been proposed over 4 decades.

Density-functional approximations (DFAs)

While DFT was formulated in 1965, the most popular DFAs were developed between 1986-1996.

Walter Kohn

Axel Becke

Hierarchy of DFAs

Introduction

In order of roughly increasing accuracy and computational time:

- The local spin-density approximation (LSDA) $E(\rho)$
- Generalized gradient approximations (GGAs) $E(\rho, \nabla \rho)$
 - common examples: BLYP, PW91, PBE, PBEsol, B86bPBE
- meta-GGAs $E(\rho, \nabla \rho, \nabla^2 \rho, \tau)$
 - common examples: BR, M06-L, SCAN
- Global hybrids global mixing of DFAs with Hartree-Fock (HF)
 - common examples: B3LYP, PBE0, M06-2X
- Range-separated hybrids variable mixing of DFAs with HF
 - ► common examples: LC-BLYP, LC-ωPBE, ωB97X

Density-functional thermochemistry

Mean absolute errors, in kcal/mol, for 222 heats of formation:

Method type	MAE
Hartree-Fock	225
LSDA	120
(meta-)GGAs	\sim 10
Hybrids	\sim 2-5

Hybrid functionals are quite accurate for intramolecular bonding.

Physics vs. parameterization

Two schools of thought in functional development:

Introduction

- Physical constraints
- Empirical parameters

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann

Comp Chem and DFT

End

Physics vs. parameterization

Two schools of thought in functional development:

Introduction

- Physical constraints
- **Empirical parameters**

Too many parameters can lead to over-fitting and errors outside the fit set.

Medvedev et al. Science 355, 49-52 (2017)

Comp Chem and DFT

End

What type of DFA should I use when?

Solid-state: use GGAs, like PBE or B86bPBE, since hybrids are too expensive.

Molecular: use global hybrids like B3LYP or PBE0, unless you have:

- Delocalization/self-interaction error:
 - Examples include charge-transfer complexes, halogen bonding, H-atom transfer transition states, etc.
 - ▶ use range-separated hybrids like LC-ωPBE, ωB97X
- Multi-reference systems/strong correlation error:
 - ► Examples include open-shell singlet biradicals (¹O₂), some transition-metal compounds (Cr₂)
 - ▶ Use correlated-wavefunction theory, not DFT, if possible
 - Otherwise, use GGAs, like PBE or B86bPBE

Dispersion corrections

Introduction

London dispersion is responsible for condensation of non-polar species, like noble gases and hydrocarbons.

The strength of dispersion interactions increases with polarizability, explaining boiling-point trends.

This long-range non-local interaction is not captured by most density functionals.

Dispersion interactions

- Biomolecular structure
- Self-assembly
- Layered materials

- Surface adsorption
- Phase transitions
- Crystal packing

Dispersion interactions: graphite

Explicit dispersion-energy terms need to be added to DFT methods.

The dispersion energy

Introduction

Dispersion arises from interaction of instantaneous dipoles (and higher-order multipoles) in the electron density distribution.

The dispersion energy can be written as a sum over all atom pairs:

$$E_{\text{disp}} = -\sum_{i < j} \left(\frac{C_6}{R_{ij}^6} + \frac{C_8}{R_{ij}^8} + \dots \right)$$

Hierarchy of dispersion corrections

In order of roughly increasing accuracy and computational time:

- D2, TS C_6 's are fixed or weakly dependent on environment
- D3, D3(BJ) dispersion coefficients depend on coordination
- XDM, MBD highly dependent on environment
- vdW-DF, rVV10 explicitly non-local XC functional

Choosing any is better than nothing — dispersion corrections are physically important and should not be viewed as optional.

Atom-centered basis sets

Take linear combinations of atomic orbitals to form molecular orbitals:

Introduction

$$\phi = c_1 \chi_1 + c_2 \chi_2 + \ldots + c_n \chi_n = \sum_{i=0}^n c_i \chi_i$$

However, using hydrogen-like AOs is not practical for computing the electron-electron repulsion integrals.

Gaussian basis sets

Use a sum of Gaussians to represent each AO:

$$\chi = Nx^{i}y^{j}z^{k}e^{-ar^{2}}$$

$$i = j = k = 0 \quad \rightarrow \quad \text{s orbital}$$

$$i + j + k = 1 \quad \rightarrow \quad p \text{ orbital}$$

$$i + j + k = 2 \quad \rightarrow \quad d \text{ orbital}$$

$$i + j + k = 3 \quad \rightarrow \quad f \text{ orbital}$$

Using 2 or more sets of Gaussians per orbital allows them to expand or contract.

Comp Chem and DFT

End

Gaussian basis sets — building flexibility

Polarization functions (*):

- include higher angular-momentum functions
- add p functions to s-block and d functions to p-block elements
- allows polarization of the density along bonds and for lone pairs

Spherical density

Polarized density

Density difference

Gaussian basis sets — building flexibility

Diffuse functions (+):

- add broad Gaussians with small exponents
- important for anions, which have large atomic radii
- important for intermolecular interactions, like H-bonding

Which basis sets should I use?

Geometry optimization and frequency calculations:

- time-consuming, require many energy evaluations
- fairly insensitive to basis set
- use small basis sets: 6-31G*, cc-pVDZ, def-SVP
- for anions and very electronegative atoms, add diffuse functions: 6-31+G*, aug-cc-pVDZ, def-SVPD

Single-point energy calculations:

- fairly quick, require only one energy evaluation
- quite sensitive to basis set
- use large basis sets: 6-311+G(2d,2p), aug-cc-pVTZ, def-TVZPD

End

Effective core potentials (ECPs)

For heavy elements, core electrons are replaced by an ECP to

- save computational time since core electrons are unreactive
- include scalar relativistic effects.
- ECPs are typically necessary for $Z \ge 37$ (i.e. beyond Kr)
- For transition metals, the outermost s and p electrons should be modeled explicitly, not included in the ECP

Periodic boundary conditions

Most solids are crystals than can be represented by a single unit cell, repeatedly replicated in 3D.

The basis functions should have the same periodicity as the lattice.

Plane-wave basis sets

Introduction

All plane waves are included up to some energy (frequency) cutoff.

End

Pseudopotentials

Introduction

Sharp electron-density peaks near nuclei are hard to represent using plane waves.

Replace the potential (and the density) within some cut-off radius, $r_{\rm cut}$.

Pseudopotentials are used for all elements.

Core regions between bonded atoms must never overlap.

Distance from nucleus

Integrals: k-point mesh

Introduction

Integrals to evaluate the energy are done numerically – need a dense enough mesh to obtain converged values.

In reciprocal space - more points for small cell dimensions and few points for large cell dimensions.

Summary

Introduction

DFT is a powerful tool for chemistry, physics, materials science, and engineering, but is not a black box – always seek input from experts.

It is important that enough detail is given for the calculations to be reproducible and for the reader to judge their quality.

- Geometry details for the system under study
 - cif files or xyz coordinates
 - charge and magnetization
- The choice of density functional
 - functional name, citation, dispersion correction
- Basis set or plane-wave/pseudopotential details
 - basis set and ECP
 - pseudopotential type, plane-wave cutoffs, k-point mesh