Dispersion

Basis Sets

## An (Opinionated) Introduction to Density-Functional Theory

#### Erin R. Johnson



Dispersion

#### Partnership between theory and experiment

Simulating chemical processes computationally can help interpret and inform experiment.





Dispersion

Basis Sets

### What can theory predict?

The aim of quantum chemistry is to accurately predict molecular and materials properties from first principles.

- molecular or crystal geometries
- thermodynamic quantities
- mechanisms and chemical kinetics
- spectroscopic quantities
- mechanical properties



End

Dispersion

## **Calculation details**

When setting up a calculation it is important to consider:

- The geometry of the system under study, including atom positions, charge, spin, and unit-cell
- The choice of density functional (and dispersion correction)
- The basis set and ECPs/pseudopotentials
- Any other specific options (solvent, relativistic corrections, etc.)



What types of calculations are possible?

Consider a potential energy surface (PES):



Intrinsic coordinate



#### Calculation types — single-point energy



Intrinsic coordinate



# Calculation types — geometry optimization



Introduction

Functional

**Basis Sets** 

#### **Calculation types — frequencies**



Intrinsic coordinate

End

Dispersion

Basis Sets

End o

## Other calculation types

Detailed analysis of a particular property can also be done as part of a single-point energy calculation.

- Charge analysis
- Energy decomposition
- ELF and NCI plots
- Band structures
- Density of states
- Excitation energies
- NMR shieldings





Dispersion

Basis Sets

End o

## **Electron density and energy**

The occupied MOs generate the 3D electron density,  $\rho.$ 

$$\rho = \sum_{i} |\phi_i|^2$$

The energy is written as a functional of the density:

$$E = E[\rho(x, y, z)]$$



Dispersion

Basis Sets

End

### What is the challenge?

Electrons cannot be treated as classical, independent particles.



## **Density-functional theory (DFT)**

The DFT energy is written as a sum of terms:

$$E = T_0 + V(\rho) + J_0(\rho) + E_{\rm XC}(\rho)$$

- *T*<sup>0</sup> is the kinetic energy of the electrons
- V is the electron-nuclear potential energy
- J<sub>0</sub> is the classical electron-electron repulsion energy
- *E*<sub>XC</sub> is the exchange-correlation energy

 $E_{\rm XC}$  is the difference between the classical and quantum-mechanical electron-electron interactions.

Dispersion

**Density-functional approximations (DFAs)** 

The DFT energy is written as a sum of terms:

 $E = T_0 + V(\rho) + J_0(\rho) + E_{\rm XC}(\rho)$ 

JJJX

The forms of  $T_0$ , V, and  $J_0$  are known and straightforward to compute.

The exact form of  $E_{\rm XC}$  is unknown and there is no systematic route to obtain it – very many DFAs have been proposed over 4 decades.

#### **Density-functional approximations (DFAs)**

While DFT was formulated in 1965, the most popular DFAs were developed between 1986-1996.





**Basis Sets** 

Walter Kohn



Axel Becke

Dispersion

## **Hierarchy of DFAs**

In order of roughly increasing accuracy and computational time:

- The local spin-density approximation (LSDA)  $E(\rho)$
- Generalized gradient approximations (GGAs)  $E(\rho, \nabla \rho)$ 
  - common examples: BLYP, PW91, PBE, PBEsol, B86bPBE
- meta-GGAs  $E(\rho, \nabla \rho, \nabla^2 \rho, \tau)$ 
  - common examples: BR, M06-L, SCAN
- Global hybrids global mixing of DFAs with Hartree-Fock (HF)
  - ► common examples: B3LYP, PBE0, M06-2X
- Range-separated hybrids variable mixing of DFAs with HF
  - ► common examples: LC-BLYP, LC-ωPBE, ωB97X

Dispersion

Basis Sets

End o

## **Density-functional thermochemistry**

Mean absolute errors, in kcal/mol, for 222 heats of formation:

| Μετησά τγρε - ΜΑΕ     |
|-----------------------|
| Hartree-Fock 225      |
| LSDA 120              |
| (meta-)GGAs $\sim$ 10 |
| Hybrids $\sim$ 2-5    |

Hybrid functionals are quite accurate for intramolecular bonding.

Dispersion

#### End o

#### Physics vs. parameterization

Two schools of thought in functional development:

- Physical constraints
- Empirical parameters

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."



х

John von Neumann

Dispersion

## Physics vs. parameterization

Two schools of thought in functional development:

- Physical constraints
- Empirical parameters

Too many parameters can lead to over-fitting and errors outside the fit set.



Medvedev et al. Science 355, 49-52 (2017)

## What type of DFA should I use when?

Solid-state: use GGAs, like PBE or B86bPBE, since hybrids are too expensive (at least with plane waves).

Molecular: use global hybrids like B3LYP or PBE0, unless you have:

- Delocalization/self-interaction error:
  - Examples include charge-transfer complexes, halogen bonding, H-atom transfer transition states, etc.
  - use range-separated hybrids like LC- $\omega$ PBE,  $\omega$ B97X
- Multi-reference systems/strong correlation error:
  - Examples include open-shell singlet biradicals (<sup>1</sup>O<sub>2</sub>), some transition-metal compounds (Cr<sub>2</sub>)
  - ► Use correlated-wavefunction theory, not DFT, if possible
  - Otherwise, use GGAs, like PBE or B86bPBE

Dispersion

Basis Sets

End o

## **Dispersion corrections**

London dispersion is responsible for condensation of non-polar species, like noble gases and hydrocarbons.



The strength of dispersion interactions increases with polarizability, explaining boiling-point trends.

This long-range non-local interaction is not captured by most density functionals.

Dispersion

Basis Sets

End

#### **Dispersion interactions**



- Biomolecular structure
- Self-assembly
- Layered materials



- Surface adsorption
- Phase transitions
- Crystal packing

Dispersion

#### **Dispersion interactions: graphite**

Explicit dispersion-energy terms need to be added to DFT methods.



Comp Chem and DFT

Dispersion

Basis Sets

End

## The dispersion energy

Dispersion arises from interaction of instantaneous dipoles (and higher-order multipoles) in the electron density distribution.



The dispersion energy can be written as a sum over all atom pairs:

$$E_{ ext{disp}} = -\sum_{i < j} \left( rac{C_6}{R_{ij}^6} + rac{C_8}{R_{ij}^8} + \dots 
ight)$$

End

In order of roughly increasing accuracy and computational time:

- D2, TS C<sub>6</sub>'s are fixed or weakly dependent on environment
- D3, D3(BJ) dispersion coefficients depend on coordination
- XDM, MBD highly dependent on environment
- vdW-DF, rVV10 explicitly non-local XC functional

Choosing any is better than nothing — dispersion corrections are physically important and should not be viewed as optional.

24/35

Dispersion

End

#### Atom-centered basis sets

Take linear combinations of atomic orbitals to form molecular orbitals:



However, using hydrogen-like AOs is not practical for computing the electron-electron repulsion integrals.

Dispersion

## Gaussian basis sets

Use a sum of Gaussians to represent each AO:

$$\chi = N x^i y^j z^k e^{-ar^2}$$

| i = j = k = 0 | $\rightarrow$ | s orbital |
|---------------|---------------|-----------|
| i+j+k=1       | $\rightarrow$ | p orbital |
| i+j+k=2       | $\rightarrow$ | d orbital |
| i+j+k=3       | $\rightarrow$ | f orbital |

Using 2 or more sets of Gaussians per orbital allows them to expand or contract.



Distance from nucleus

#### Gaussian basis sets — building flexibility

Polarization functions (\*):

- include higher angular-momentum functions
- add *p* functions to *s*-block and *d* functions to *p*-block elements
- allows polarization of the density along bonds and for lone pairs



27/35

End

Diffuse functions (+):

- add broad Gaussians with small exponents
- important for anions, which have large atomic radii
- important for intermolecular interactions, like H-bonding



## Which basis sets should I use?

Geometry optimization and frequency calculations:

- time-consuming, require many energy evaluations
- fairly insensitive to basis set
- use small basis sets: 6-31G\*, cc-pVDZ, def-SVP
- for anions and very electronegative atoms, add diffuse functions: 6-31+G\*, aug-cc-pVDZ, def-SVPD

Single-point energy calculations:

- fairly quick, require only one energy evaluation
- quite sensitive to basis set
- use large basis sets: 6-311+G(2d,2p), aug-cc-pVTZ, def-TVZPD

Dispersion

## Effective core potentials (ECPs)

For heavy elements, core electrons are replaced by an ECP to

- save computational time since core electrons are unreactive
- include scalar relativistic effects
- ECPs are typically necessary for  $Z \ge 37$  (i.e. beyond Kr)
- For transition metals, the outermost *s* and *p* electrons should be modeled explicitly, not included in the ECP





Dispersion

End o

## Periodic boundary conditions

Most solids are crystals than can be represented by a single unit cell, repeatedly replicated in 3D.



The basis functions should have the same periodicity as the lattice.

E. R. Johnson (Dalhousie)

Comp Chem and DFT

Dispersion

End o

#### **Plane-wave basis sets**

All plane waves are included up to some energy (frequency) cutoff.



Position

32/35

Dispersion

## **Pseudopotentials**

Sharp electron-density peaks near nuclei are hard to represent using plane waves.

Replace the potential (and the density) within some cut-off radius,  $r_{\rm cut}$ .

Pseudopotentials are used for all elements.

Core regions between bonded atoms must never overlap.



Distance from nucleus

33/35

Dispersion

Basis Sets

End o

### Integrals: k-point mesh

Integrals to evaluate the energy are done numerically – need a dense enough mesh to obtain converged values.



In reciprocal space – more points for small cell dimensions and few points for large cell dimensions.

Dispersion



DFT is a powerful tool for chemistry, physics, materials science, and engineering, but is not a black box. Be sure to consider:

- Geometry details for the system under study
  - cif files or xyz coordinates
  - charge and magnetization
- The choice of density functional
  - base functional
  - dispersion correction
- Basis set or plane-wave/pseudopotential details
  - basis set and ECP
  - ► pseudopotential type, plane-wave cutoffs, k-point mesh