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Chapter 1

Introduction and Review

1.1 Motivation for Quantization

On the macroscopic scale, most quantities can take on a continuous range of values. You
can

� walk at any speed

� experience any temperature outside

� have any volume of water

� have any concentration of solution

� have any mass of a substance

However, some things are quantized. For example, at the store, you can buy only integer
numbers of of fruits, vegetables, eggs, tins, etc.

At the atomic level, everything is quantized:

� only an integer number of atoms can make up a molecule or nanoparticle

� atoms have integer numbers of electrons

Given this, the mathematical description of electrons, atoms, and molecules (Quantum Me-
chanics, QM) must give quantized solutions and is different than that describing bulk, macro-
scopic properties (Classical Mechanics).

Historically, QM was developed by proposing math to explain observations such as the
distinct bands in bright-line emission spectra of atoms, which revealed quantized atomic
energy levels.

1
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However, rather than introducing QM from a historical perspective, we will begin with some
mathematical background.

1.2 Linear Algebra Review

Mathematically, quantized systems are commonly modeled with vectors and matrices. Two
vectors can be written as a = (a1, a2, a3) and b = (b1, b2, b3). The dot product, a · b, is

aTb =
[
a1 a2 a3

] b1b2
b3

 = a1b1 + a2b2 + a3b3

which gives a number. Recall that the T superscript denotes the transpose of a vector or
matrix. Alternatively, taking the product

abT =

a1a2
a3

 [b1 b2 b3
]
=

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3


gives a matrix. To add two matrices, A and B,

A+B =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

+

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 =

a1,1 + b1,1 a1,2 + b1,2 a1,3 + b1,3
a2,1 + b2,1 a2,2 + b2,2 a2,3 + b2,3
a3,1 + b3,1 a3,2 + b3,2 a3,3 + b3,3


and A+B = B+A. To multiply two matrices,

AB =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3


=

a1,1b1,1 + a1,2b2,1 + a1,3b3,1 a1,1b1,2 + a1,2b2,2 + a1,3b3,2 a1,1b1,3 + a1,2b2,3 + a1,3b3,3
a2,1b1,1 + a2,2b2,1 + a2,3b3,1 a2,1b1,2 + a2,2b2,2 + a2,3b3,2 a2,1b1,3 + a2,2b2,3 + a2,3b3,3
a3,1b1,1 + a3,2b2,1 + a3,3b3,1 a3,1b1,2 + a3,2b2,2 + a3,3b3,2 a3,1b1,3 + a3,2b2,3 + a3,3b3,3


As a result of this definition, AB ̸= BA, so the order of matrix multiplication matters and
we say that it does not commute.

A square matrix (A) has characteristic eigenvalues (λi) and eigenvectors (xi) that can be
found via diagonalization.

Axi = λixi

For a 3× 3 example,

A =

2 0 0
1 2 −1
1 3 −2


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We find the eigenvalues by setting

det(A− λI) = 0

where I is the identity matrix

I =

1 0 0
0 1 0
0 0 1


The determinant is then ∣∣∣∣∣∣

2− λ 0 0
1 2− λ −1
1 3 −2− λ

∣∣∣∣∣∣ = 0

−(2− λ)(2− λ)(2 + λ) + 3(2− λ) = 0

(4− 4λ+ λ2)(2 + λ)− 6 + 3λ = 0

λ3 − 2λ2 − λ+ 2 = 0

(λ− 2)(λ− 1)(λ+ 1) = 0

Thus, the solutions are
{λ1, λ2, λ3} = {2, 1,−1}

and these roots are the eigenvalues. To find the eigenvectors, we need to find the solution
to the system of equations

(A− λiI)xi = 0

For the case of λ1 = 2, we can represent the system of equations to be solved as an augmented
matrix, which can be row reduced: 0 0 0 0

1 0 −1 0
1 3 −4 0

 =

 1 0 −1 0
0 1 −1 0
0 0 0 0


This corresponds to a linearly dependent system of equations:

x− z = 0

y − z = 0

So picking a value of z immediately determines the values of the other two variables. If we
select z = 1 for convenience, we then have x = 1 and y = 1 as well. Therefore, this gives an
eigenvector of

x1 =

11
1


(or any multiple of this result).
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Similarly, for λ2 = 1, we can obtain

x2 =

01
1


and, for λ3 = −1, we have

x3 =

01
3


Eigenvalues and eigenvectors have physical interpretations, such as the vibrational frequen-
cies, and the corresponding vibrational modes (components in the x, y, z directions).

If the eigenvalues are taken to be a physical observable, they must be real numbers, so we
are only interested in matrices that give real eigenvalues. One class of matrices that are
guaranteed to give real eigenvalues are Hermitian matrices (although, as in the example
above, not all matrices with real eigenvalues are Hermitian).

A matrix is Hermitian if it is equal to the transpose of its complex conjugate.

A = A† = (A∗)T

To prove that a Hermitian matrix has real eigenvalues, we begin with the eigenvalue equation

Ax = λx

and take the conjugate transpose of both sides

x†A† = λ∗x†

Using the Hermitian property, this becomes

x†A = λ∗x†

Now we left multiply the first eigenvalue equation by x† to give

x†Ax = λx†x

and right multiply the second eigenvalue equation by x to give

x†Ax = λ∗x†x

Subtracting the two equations,
(λ− λ∗)x†x = 0

which requires
λ = λ∗
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so the eigenvalues are real.

Another important property of Hermitian matrices is that their eigenvectors are orthogonal:

x†
jxi = 0

Typically the eigenvectors are also chosen to be normalized, such that

x†
jxi = δij

Here, δij is the Kronecker delta function, which is 1 for i = j (normalization) and 0 for i ̸= j.

δij =

{
1 , if i = j
0 , if i ̸= j

Finally, the eigenvectors form a complete set, meaning that we can express any arbitrary
vector, y, in terms of these basis vectors:

y =
∑
i

cixi

where the ci’s are expansion coefficients

ci = x†
iy

This requires ∑
i

xix
†
i = 1

which is known as the completeness (or closure) relation.

Can we represent quantized properties without using matrices? As we will see, we can instead
use Hermitian operators that share many properties with Hermitian matrices, but are based
on calculus instead of linear algebra.

1.3 Review of Differential Equations

Let’s consider a second-order differential equation of the form

− d2

dx2
f(x) = λf(x)

where λ is a real number, which resembles our matrix eigenvalue equation. Here, − d2

dx2 is
termed an operator, f(x) is an eigenfunction, and λ is once again the eigenvalue.
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Our second-order differential equation can be re-written as

d2

dx2
f(x) + λf(x) = 0

When solving differential equations, a common approach is to propose the form of a solution,
and then demonstrate that it works. To solve the above equation, we propose

f(x) = eax

d

dx
f(x) = aeax

d2

dx
f(x) = a2eax

Substituting this into the differential equation, it becomes

a2eax + λeax = 0

(a2 + λ)eax = 0

For a non-trivial solution, this requires

a2 = −λ

Let us consider the cases of λ < 0 and λ > 0 separately.

If λ < 0, a = ±
√
|λ| and the general solution is

f(x) = Ae
√

|λ|x +Be−
√

|λ|x

where A and B are some arbitrary constants.

If λ > 0, a = ±i
√
λ and the general solution is

f(x) = Aei
√
λx +Be−i

√
λx

Using Euler’s identity

f(x) = A
[
cos
(√

λx
)
+ i sin

(√
λx
)]

+B
[
cos
(
−
√
λx
)
+ i sin

(
−
√
λx
)]

= A
[
cos
(√

λx
)
+ i sin

(√
λx
)]

+B
[
cos
(√

λx
)
− i sin

(√
λx
)]

= (A+B) cos
(√

λx
)
+ (A−B) i sin

(√
λx
)

= C cos
(√

λx
)
+D sin

(√
λx
)
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for two new constants C and D.

The solution gives all possible sine and cosine functions, which are orthogonal and form a
basis, as expected for a Hermitian operator. Any well-behaved, single-valued function can
be written as a sum of many sines and cosines with different frequencies, which is the basis
of the Fourier series expansion.

1.4 Definite Integrals

To evaluate many QM quantities, we will need to determine the values of definite integrals
of functions. A definite integral is evaluated over a specified range, from an initial value, i,
to a final value, f :

I =

∫ f

i

g′(x)dx = g(f)− g(i)

As an example, let us evaluate the definite integral

I =

∫ 1

0

xdx =
1

2
x2
∣∣∣∣1
0

=
1

2
(12 − 02) =

1

2

A particularly useful property is that the integral of an odd function, (i.e. g(−x) = −g(x))
over a symmetric interval (i.e. from −a to a) is zero. This makes intuitive sense, since half
of the area is negative and half positive.

As an example, consider

I =

∫ 1

−1

xdx

this is an integral of an odd function over a symmetric
interval, so we can say that it is zero by inspection.
To show this

I =

∫ 1

−1

xdx =
1

2
x2
∣∣∣∣1
−1

=
1

2
(12 − (−1)2) = 0

−1

−0.5

 0

 0.5

 1

−1 −0.5  0  0.5  1

g
(x

)=
x

x

Also, the integral of an even function (i.e. g(−x) = g(x)) over a symmetric interval is∫ a

−a

g(x)dx = 2

∫ a

0

g(x)dx
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As an example, consider

I =

∫ π/2

−π/2

cos(x)dx

= sin(x)

∣∣∣∣π/2
−π/2

= sin(π/2)− sin(−π/2)

= 1− (−1)
= 2

which is equivalent to

I = 2

∫ π/2

0

cos(x)dx

= 2 sin(x)

∣∣∣∣π/2
0

= 2 sin(π/2)− sin(0)

= 2(1− 0)

= 2

−0.5

 0

 0.5

 1

 1.5

−π/2 0 π/2

g
(x

)=
c
o
s(

x
)

x

Finally, the product of an even function and an odd function is an odd function, so for the
more complicated integral

I =

∫ 1

−1

x cos(x) sin2(x)dx

we can see that the integrand is an odd function and the integral is zero.

Most commonly, we will be evaluating definite integrals over the range (0,∞) or (−∞,∞).
Tables of definite integrals are available and should be used whenever possible. Some common
definite integrals are:

∫ a

0

sin2
(nπ
a
x
)
dx =

a

2∫ a

0

x sin2
(nπ
a
x
)
dx =

a2

4∫ a

0

x2 sin2
(nπ
a
x
)
dx =

( a

2πn

)3(4π3n3

3
− 2nπ

)
∫ ∞

0

xne−axdx =
n!

an+1
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0

e−ax2

dx =
1

2

√
π

a∫ ∞

0

xe−ax2

dx =
1

2a∫ ∞

0

x2e−ax2

dx =
1

4

√
π

a3∫ ∞

0

x3e−ax2

dx =
1

2a2∫ ∞

0

x4e−ax2

dx =
3

8

√
π

a5

1.5 Unit Conversion

A useful table of conversion factors is:

J kJ/mol eV a.u. cm−1 Hz
1 J 1 6.022× 1020 6.242× 1018 2.294× 1017 5.035× 1022 1.509× 1033

1 kJ/mol 1.661× 10−21 1 1.036× 10−2 3.089× 10−4 83.60 2.506× 1012

1 eV 1.602× 10−19 96.48 1 3.675× 10−2 8065 2.418× 1014

1 a.u. 4.359× 10−18 2625 27.21 1 2.195× 105 6.580× 1015

1 cm−1 1.986× 10−23 1.196× 10−2 1.240× 10−4 4.556× 10−6 1 2.998× 1010

1 Hz 6.616× 10−34 3.990× 10−13 4.136× 10−15 1.520× 10−16 3.336× 10−11 1



Chapter 2

Waves in One Dimension

2.1 Kinetic and Potential Energies

The total energy (E) of a physical system,

E = T + V,

is a sum of kinetic (T ) and potential (V ) energies. The kinetic energy can be written in
terms of the momentum, p = mv, which is a product of mass (m) and velocity (v):

T =
p2

2m
,

while the potential energy is generally a function of only position, V = V (x). This gives the
total energy as

E =
p2

2m
+ V (x).

For a free particle or wave in the absence of a potential, V (x) = 0, and the energy is
dependent only on the momentum.

2.2 The Classical Wave Equation

Let us consider a uniform string stretched between two points and a localized wave pulse
moving down the string.

The classical wave equation describes how this wave evolves with time:

∂2

∂x2
Ψ(x, t) =

1

v2
∂2

∂t2
Ψ(x, t)

10
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where Ψ(x, t) gives the amplitude of the wave at position x and time t. Here, v is the velocity
of the wave’s propagation, which can be related to the wavelength (λ) and frequency (ν):

v = λν

It is common to make a change of variables and define the wavenumber as

k =
2π

λ

and the angular frequency as
ω = 2πν

such that the velocity is

v =
ω

k
.

The wave equation can be solved using the method of separation of variables. We propose a
solution

Ψ(x, t) = ψ(x)f(t)

Substituting this into the wave equation gives

f(t)
∂2

∂x2
ψ(x) =

1

v2
ψ(x)

∂2

∂t2
f(t)

Rearranging to group all the x-dependent terms on one side and the t-dependent terms on
the other:

1

ψ(x)

∂2

∂x2
ψ(x) =

1

v2
1

f(t)

∂2

∂t2
f(t) = k2

The two sides can only be equal for all values of x, t if they are each equal to a constant,
which we will pick to be k2.

This gives two differential equations to solve, with each now being a function of a single
variable:

∂2

∂x2
ψ(x)− k2ψ(x) = 0

∂2

∂t2
f(t)− ω2f(t) = 0

where ω = kv. These both have the form we saw previously and, if k is a real number, then
the solutions are sinusoidal functions. The general solutions are

ψ(x) = e±ikx

f(t) = e±iωt
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2.3 From the Wave Equation to the Time-Dependent

Schrödinger Equation

The time-dependent Schrödinger Equation is the fundamental equation in quantum mechan-
ics. It can be motivated from the classical wave equation with some additional assumptions
regarding energy quantization.

The general solutions of the 1D wave equation can be written as

Ψ(x, t) = ei(kx−ωt)

if we combine the position- and time-dependent terms into a single exponential.

Following Planck, we take the energy as being quantized and proportional to the angular
frequency,

E =
p2

2m
= ℏω

where ℏ is the reduced Planck constant. Solving for ω gives

ω =
p2

2mℏ

Also, de Broglie postulated that the momentum is related to the wavelength

p =
h

λ
=

(
h

2π

)(
2π

λ

)
= ℏk

where h is Planck’s constant and ℏ = h/2π. Substituting, this gives

ω =
ℏk2

2m

Using this relation, the wavefunction becomes

Ψ(x, t) = exp

[
i

(
kx− ℏ

2m
k2t

)]

Due to the k-dependence of the exponential, we can related the first derivative with respect
to t to the second derivative with respect to x:

∂2Ψ

∂x2
= (ik)2Ψ = −k2Ψ

∂Ψ

∂t
= − iℏ

2m
k2Ψ
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Combining these results gives:
iℏ
2m

∂2Ψ

∂x2
=
∂Ψ

∂t
Multiplying through by iℏ gives the more common form of

− ℏ2

2m

∂2Ψ

∂x2
= iℏ

∂Ψ

∂t

which is the time-dependent Schrödinger equation in one dimension.

The time-dependent Schrödinger equation is not a result that can be rigorously derived.
Rather, it can be motivated by arguments like the one above and is shown to be valid based
on the accuracy of the resulting predictions.

2.4 From the Wave Equation to the Time-Independent

Schrödinger Equation

While the time-dependent Schrödinger equation is the starting point for QM, it is not the
key equation in quantum chemistry. Here, we are primarily interested in the ground states
of atoms and molecules, which are stable and do not depend on time, so we instead turn
to the time-independent Schrödinger equation. As we will see, this equation can be derived
from the time-dependent result, but it can also be motivated from the wave equation.

Let us return to the wave equation

∂2

∂x2
u(x, t) =

1

v2
∂2

∂t2
u(x, t)

and propose the solution
u(x, t) = ψ(x) cos(ωt).

This simplifies the differential equation

∂2

∂x2
ψ(x) cos(ωt) =

1

v2
ψ(x)

∂2

∂t2
cos(ωt)

∂2

∂x2
ψ(x) cos(ωt) = −ω

2

v2
ψ(x) cos(ωt)

∂2

∂x2
ψ(x) = −ω

2

v2
ψ(x)

∂2

∂x2
ψ(x) = −k2ψ(x)

Additionally, we can rearrange the total energy expression

E =
p2

2m
+ V (x)
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to solve for the momentum:

p2 = 2m [E − V (x)]

ℏ2k2 = 2m [E − V (x)]

k2 =
2m

ℏ2
[E − V (x)]

where we have used the de Broglie relation.

Inserting this result into the differential equation gives

∂2

∂x2
ψ(x) = −2m

ℏ2
[E − V (x)]ψ(x)

Finally, rearranging, we obtain

− ℏ2

2m

∂2

∂x2
ψ(x) + V (x)ψ(x) = Eψ(x)

This is more compactly written as

Hψ(x) = Eψ(x)

which has a form of an eigenvalue problem. Here, the operator

H = − ℏ2

2m

∂2

∂x2
+ V (x)

is termed the Hamiltonian. The Hamiltonian is the total energy operator,

H = T + V

and allows us to assign the kinetic energy operator in 1D as

T =
p2

2m
= − ℏ2

2m

∂2

∂x2

2.5 Eliminating Time Dependence via Separation of

Variables

Finally, we can obtain the time-independent Schrödinger equation from the time-dependent
one via the method of separation of variables, provided that the potential does not depend
on time (i.e. V = V (x)).
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Our general time-dependent Schrödinger equation is

HΨ = iℏ
∂Ψ

∂t

which reduces to the form obtained above for the case of V = 0.

We propose the solution
Ψ(x, t) = ψ(x)f(t)

which gives

− ℏ2

2m

d2ψ

dx2
f + V ψf = iℏ

df

dt
ψ

Dividing through by ψf gives

1

ψ

[
− ℏ2

2m

d2ψ

dx2
+ V ψ

]
=

1

f

[
ih
df

dt

]
= C

where both sides must equal some constant, C, to ensure equality for all x, t.

The position-dependent result is

− ℏ2

2m

d2ψ

dx2
+ V ψ = Cψ

which is almost the time-independent Schrödinger equation, but we need to determine the
value of the constant, C. By dimensional analysis, V has units of energy, so C must also
have units of energy and it makes sense that C = E.

To show this more rigorously, we return to the time-dependent result:

1

f

[
iℏ
df

dt

]
= C

This differential equation is separable, since we can group together like terms,

df

f
=
C

iℏ
dt

We can then integrate both sides of the differential equation∫
1

f
df =

C

iℏ

∫
dt

Integrating gives

ln(f) =
C

iℏ
t
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and we take the exponential of both sides to eliminate the natural logarithm

f(t) = exp

(
−iC

ℏ
t

)
This is a sinusoidal function with frequency ω = C/ℏ, or C = ℏω. Recalling Planck’s energy
quantization, E = ℏω, so we have simply C = E.

Thus, replacing the value of C in the position-dependent result gives

− ℏ2

2m

d2ψ

dx2
+ V ψ = Eψ

or, more compactly,
Hψ = Eψ

which is the time-independent Schrödinger equation.

As long as the potential is time-independent, it is trivial to go from the solution to the TISE
to the TDSE. Time-dependent potentials are not common, so the TISE is normally all we
care about in quantum chemistry.



Chapter 3

The Basics of Quantum Mechanics

Quantum mechanics is usually presented by introducing a series of postulates, the validity
of which is confirmed by the excellent quantitative accuracy of QM predictions.

3.1 The Wavefunction

Postulate 1: The state of a QM system is completely specified by the wavefunction, Ψ,
which depends on the positions of all particles in the system, and on time.

In quantum chemistry, we are primarily interested in the time-independent wavefunction, ψ,
which is a function of position only. The wavefunction can be used to predict observable
properties of the system, such as the energy.

As the wavefunction can be a complex function, it does not correspond to a measurable
quantity itself. However, the real quantity

|ψ|2 = ψ∗ψ

can be interpreted as a probability density. The wavefunction gives a probability, P , of
finding a particle within a particular region when integrated over the volume of interest, V .
In the case of a 1D system, this is

P =

∫
V

|ψ|2dx

and in the case of 3D, this is

P =

∫∫∫
V

|ψ|2dx dy dz

17
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The total probability of finding a particle with wavefunction ψ anywhere in space is unity.
This gives rise to the normalization constraint∫ ∞

−∞
|ψ|2dx = 1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|ψ|2dx dy dz = 1

depending on whether we are working in 1D or 3D. For any bound state, the wavefunction
is always normalizable.

There is a discrete spectrum of bound wavefunctions, ψi, with energies, Ei (where i is a
labeling index), that are the solutions to the time-independent Schrödinger equation.

Hψi = Eiψi

These are the stationary states (independent of time).

The wavefunctions for different energies are orthonormal∫ ∞

−∞
ψ∗
iψjdx = δij

and the set of wavefunctions form a complete set, spanning the space of functions. This
means that any well-behaved function, f , in the same space can be written as a linear
combination of the wavefunctions with coefficients, ci:

f =
∑
i

ciψi

3.2 Operators

Postulate 2: For every observable in classical mechanics, there is a corresponding Hermitian
operator in quantum mechanics.

Hermitian operators share the same properties as Hermitian matrices, that their eigevalues
are real – corresponding to real physical observables. It also is the Hermitian property that
guarantees that the eigenfunctions (the wavefunctions) are orthogonal and form a complete
basis (see Section 1.2).

The total energy operator is the Hamiltonian

H = T + V
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The potential energy operator, V , is system dependent, but is usually a function only of
position (time dependence is uncommon and will not be considered in this course). The
position operator itself is simply x in 1D or r = (x, y, z) in 3D.

As we have seen previously, the kinetic energy operator, T , is

T =
p2

2m

where m is the mass of the particle and p is the momentum. In 1D, we have

T = − ℏ2

2m

d2

dx2

and in 3D, we have

T = − ℏ2

2m
∇2

where ∇2 is the Laplacian operator

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Given the relation between the kinetic energy and momentum, we can write the square of
the momentum operator as

p2 = −ℏ2 d
2

dx2

The 1D momentum operator itself is

p = −iℏ d
dx

Postulate 3: For any measurement of some observable property corresponding to the op-
erator A, the result will be one of the eigenvalues of A.

The key example of this is the energy, which must be some eigenvalue of H:

Hψi = Eiψi

The only possible results of energy measurements for a single particle are E1, E2, E3, etc.

Postulate 4: If a system is a state described by the normalized wavefunction ψ, then the
average value of a measurement corresponding to observable A is

⟨A⟩ =
∫
ψ∗Aψdτ
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Here, the integral is a definite integral over all space and dτ is the appropriate volume
element (dx in 1D or dx dy dz in 3D). So, for the 1D case, this is

⟨A⟩ =
∫ ∞

−∞
ψ∗Aψdx

The physical interpretation here is that, if you have a large ensemble of particles in state ψ,
any one measurement will have to give some eigenvalue ai, but the average value over the
whole ensemble is ⟨A⟩ and is called the expectation value.

If ψ is an eigenstate of A, then the expectation value is simply the corresponding eigenvalue.
To show this, let

Aψ = aψ

Then, the expectation value is

⟨A⟩ =

∫ ∞

−∞
ψ∗Aψdx

=

∫ ∞

−∞
ψ∗aψdx

= a

∫ ∞

−∞
ψ∗ψdx

= a

where ∫ ∞

−∞
ψ∗ψdx = 1

due to normalization of the wavefunction.

If ψ is not itself an eigenfunction of A, we can expand it in terms of the eigenfunctions. Let
the eigenfunctions and eigenvalues of A be given by

Afi = aifi

Due to completeness, we can write ψ as a linear combination of the eigenfunctions, fi, with
coefficients ci:

ψ =
∑
i

cifi =
∑
i

(∫ ∞

−∞
f ∗
i ψdx

)
fi

The coefficients are found by projecting the wavefunction onto to the eigenfunctions. The
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resulting expectation value is

⟨A⟩ =

∫ ∞

−∞
ψ∗Aψdx

=

∫ ∞

−∞

(∑
i

c∗i f
∗
i

)(
A
∑
j

cjfj

)
dx

=

∫ ∞

−∞

(∑
i

c∗i f
∗
i

)(∑
j

cjajfj

)
dx

=
∑
ij

∫ ∞

−∞
c∗i cjajf

∗
i fjdx

=
∑
ij

c∗i cjajδij

=
∑
i

|ci|2ai

The final result is

⟨A⟩ =
∑
i

|ci|2ai

which is a weighted average of the eigenvalues. Therefore, the probability of measuring a
particular eigenvalue, ai is

P (ai) = |ci|2

Expectation values in quantum mechanics satisfy the same equations that their analogous
quantities satisfy in classical mechanics. For example, the total energy is the sum of kinetic
and potential terms

⟨H⟩ = ⟨T ⟩+ ⟨V ⟩

Another example of this is that the expectation values satisfy Newton’s laws of motion

⟨p⟩ = m
d⟨x⟩
dt

which is a statement of Ehrenfest’s theorem.

There are two further postulates in Quantum Mechanics. The first of these is that the state
of the system evolves in time according to the time-dependent Schrödinger equation, which
we met in Chapter 2. The second concerns the antisymmetry property of the wavefunction
for many-electron systems, which we will discuss in Chapter 9.
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3.3 Dirac’s Bra-Ket Notation

Much of what we have just written can be simplified by using Dirac’s Bra-Ket (bracket)
notation. Here, functions are written as a “ket”

f = |f⟩

their complex conjugates are written as a “bra”

f ∗ = ⟨f |

and integrals involve both a bra and ket. Orthonormality is given by

⟨ψi|ψj⟩ =
∫
ψ∗
iψjdτ = δij

and expectation values are given by

⟨A⟩ = ⟨ψ|A|ψ⟩ =
∫
ψ∗Aψdτ

The expansion of ψ in terms of a set of eigenfunctions would be

|ψ⟩ =
∑
i

ci|fi⟩ =
∑
i

⟨fi|ψ⟩|fi⟩

so that ci = ⟨fi|ψ⟩ and the completeness relation is given by∑
i

|fi⟩⟨fi| = 1

Using Dirac notation, the correspondences between Hermitian operations and Hermitian
matrices and between eigenfunctions and eigenvectors become more clear.

3.4 Commutators

One property of matrices that is shared by QM operators is that the order of action matters.
When multiplying two matrices, it is common for

AB−BA ̸= 0

As an example, let

A =

[
1 1
0 1

]
and B =

[
0 0
1 0

]
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Then,

AB−BA =

[
1 1
0 1

] [
0 0
1 0

]
−
[
0 0
1 0

] [
1 1
0 1

]
=

[
1 0
1 0

]
−
[
0 0
1 1

]
=

[
1 0
0 −1

]

Similarly, when acting on a wavefunction with two (or more) operators, it is possible that

A(Bψ)−B(Aψ) ̸= 0

The quantity on the left is termed the commutator, [A,B], whose action on the wavefunction
is

[A,B]ψ = A(Bψ)−B(Aψ)

If the two operators commute, then

A(Bψ) = B(Aψ)

and [A,B] = 0

It can be shown that two operators share a common set of eigenfunctions if and only if they
commute. To show the first part of this, we let two operators, A and B, have a common set
of eigenfunctions:

Aψi = aiψi

Bψi = biψi

Now we evaluate the action of their commutator on an arbitrary function, f , which we can
expand in terms of these eigenfunctions:

f =
∑
i

ciψi

The commutator is:

[A,B]f =
∑
i

ci[A,B]ψi

=
∑
i

ci (ABψi −BAψi)

=
∑
i

ci (aibi − biai)ψi

= 0
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and since the commutator is zero, the operators commute.

Not all QM operators commute, however. A common example is the case of the position
and momentum operators. In this case,

[x, p]ψ = x

(
−iℏdψ

dx

)
+ iℏ

d

dx
(xψ)

= −iℏxdψ
dx

+ iℏ
(
ψ + x

dψ

dx

)
= iℏψ

and therefore the commutator is [x, p] = iℏ. This means that the position and momentum
operators do not commute, and hence do not share a common set of eigenfunctions.

3.5 Variance of Expectation Values and Uncertainty

The variance of an expectation value, ⟨A⟩, is given by

σ2
A = ⟨A2⟩ − |⟨A⟩|2

For the case of real eigenvalues for operator A, this is

σ2
A = ⟨A2⟩ − ⟨A⟩2

where σA is the standard deviation or spread in the measurements of the observable A for
an ensemble of particles in state ψ.

If ψ is an eigenfunction of A, then the variance is zero. To show this,

σ2
A = ⟨ψ|A2|ψ⟩ − ⟨ψ|A|ψ⟩2

= a2⟨ψ|ψ⟩ − a2⟨ψ|ψ⟩2

= a2 − a2

= 0

However, if ψ is not an eigenfunction of A, then σA ̸= 0 and you will obtain a distribution
of values from measurements on an ensemble.

Heisenberg’s uncertainty principle relates the variances in the position and momentum op-
erators:

σpσx ≥
ℏ
2

This has the consequence that one can never make precise measurements of both a parti-
cle’s position and momentum simultaneously, which makes sense since they do not share a
common set of eigenfunctions.
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A more general statement of the uncertainty principle is, for two operators, A and B, that
do not commute, the product of their variances is

σ2
Aσ

2
B ≥ −

1

4
⟨ψ|[A,B]|ψ⟩2

For the particular case of position and momentum, we have

σ2
pσ

2
x ≥ −1

4
⟨ψ|iℏ|ψ⟩2

≥ −1

4
(−ℏ2)⟨ψ|ψ⟩2

≥ ℏ2

4

and taking the square root of both sides gives the Heisenberg uncertainty principle above.

3.6 Distributive Properties of Expectation Values

The Hamiltonian is a sum of two operators, kinetic and potential energies

H = T + V

The expectation value can also be written as a sum:

⟨H⟩ = ⟨ψ|H|ψ⟩
= ⟨ψ|T + V |ψ⟩
= ⟨ψ|T |ψ⟩+ ⟨ψV |ψ⟩
= ⟨T ⟩+ ⟨V ⟩

This is a general distributive property for expectation values:

⟨A+B⟩ = ⟨A⟩+ ⟨B⟩

However, in the case of a product of two operators,

⟨AB⟩ ≠ ⟨A⟩⟨B⟩

in general.

As an example, let us consider whether ⟨A2⟩ is equivalent to ⟨A⟩2. From the definition of
the variance:

σ2
A = ⟨A2⟩ − ⟨A⟩2
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and rearranging,
⟨A2⟩ = ⟨A⟩2 + σ2

A

so the distributive property for multiplication only holds here if the variance is zero.

In general, the distributive property ⟨AB⟩ = ⟨A⟩⟨B⟩ only holds if the wavefunction is an
eigenfunction of both A and B. Letting the resulting eigenvalues be a and b, respectively, we
can show this as follows:

⟨AB⟩ = ⟨ψ|AB|ψ⟩
= ab⟨ψ|ψ⟩
= ab

and similarly

⟨A⟩⟨B⟩ = ⟨ψ|A|ψ⟩⟨ψ|B|ψ⟩
= a⟨ψ|ψ⟩b⟨ψ|ψ⟩
= ab

Now that we have introduced the basic framework of quantum mechanics, we are ready to
apply it to some simple model systems. It is only possible to solve the Schrödinger equation
exactly for certain systems in QM, so we will focus on a few such systems that we can relate
to atoms and molecules.



Chapter 4

The Particle in a Box

4.1 Solutions for the Wavefunctions and Energies

The particle in a box is the simplest model system for which the Schrödinger equation can
be solved exactly. It is very useful as an illustration of QM concepts. In chemistry, it can
be used as a model for translation of atoms or molecules, as well as for electrons confined in
molecules.

0 a

V

x

Consider a particle in a 1D box of width a with infinitely high walls
such that

V =

{
0 , if 0 ≤ x ≤ a
∞ , if x < 0 or x > a

This potential serves to confine the particle to the box, as it cannot
be outside the box where the potential is infinite.

Inside the box, the time-independent Schrödinger equation is

− ℏ2

2m

d2

dx2
ψ = Eψ

We make the change of variable

k2 =
2mE

ℏ2

27
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so that the Schrödinger equation becomes

d2

dx2
ψ + k2ψ = 0

The general solution to this differential equation (k2 > 0) is

ψ = A cos(kx) +B sin(kx)

To determine acceptable values of k, we must apply the boundary conditions. We know that
ψ must be a continuous, well-behaved function and that ψ is zero outside the box. Therefore,
it must also be zero at the edges and

ψ(x) = 0 for x = 0 or x = a

At x = 0,

ψ = A cos(0) +B sin(0) = A = 0

so the coefficient of the cosine term must be zero.

At x = a,

ψ = B sin(ka) = 0

for which there are two possible solutions. The first is that B = 0, which is the trivial
solution. Since this would mean that ψ = 0 everywhere, and that there is no particle in the
system, we will disregard it. The second solution is

sin(ka) = 0⇒ ka = π, 2π, . . .

This means that

ka = nπ or k =
nπ

a
for n = 1, 2, . . .

so the solutions are

ψn = B sin
(nπ
a
x
)

Note that n = 0 is not included as a solution, since it would again give ψ = 0 everywhere.

Recall that

k2 =
2mE

ℏ2

so solving for E yields a series of solutions

En =
ℏ2π2n2

2ma2



4.1. Solutions for the Wavefunctions and Energies 29

This can also be written as

En = n2E1 with E1 =
ℏ2π2

2ma2

where E1 is the ground-state energy.

We still need to determine the value of the parameter B. To do this, we apply the constraint
that the wavefunctions be normalized.

⟨ψ|ψ⟩ = 1∫ ∞

−∞
ψ2
ndx = 1

Since the particle is confined, we can adjust the integration limits to the box dimensions∫ a

0

ψ2
ndx = 1

B2

∫ a

0

sin2
(nπ
a
x
)
dx = 1

B2
(a
2

)
= 1

B2 =
2

a

B =

√
2

a

where we used our list of definite integrals in Section 1.4. This integral can also be evaluated
easily using the double-angle formula: cos(2θ) = 1− 2 sin2 θ.

The final solutions for the particle in a box are

ψn =

√
2

a
sin
(nπ
a
x
)

with En =
ℏ2π2n2

2ma2
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The first few wavefunctions and energy levels are plotted below:

0 a

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

E

x

From looking at the overlaps of the various wavefunctions, it is clear that they are orthogonal:

⟨ψm|ψn⟩ =
2

a

∫ a

0

sin
(mπ

a
x
)
sin
(nπ
a
x
)
= δmn

It is straightforward to demonstrate this for any combination of m,n using integrals of sine
functions.

To highlight this for the case of m = 1, n = 2, a plot of the integrand, which is the product
of the two sine function is shown below.

−1

−0.5

 0

 0.5

 1

0 a

g
(x

)=
ψ

1
(x

)ψ
2
(x

)

x

ψ1
ψ2
ψ1 ψ2
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4.2 Some Examples

Let’s consider only the ground state of the particle in a box and evaluate the expectation
values of position and momentum. For position,

⟨x⟩ = ⟨ψ1|x|ψ1⟩

=
2

a

∫ a

0

x sin2
(π
a
x
)
dx

=
2

a

(
a2

4

)
=

a

2

where we used our list of definite integrals in Section 1.4. So, on average the particle is in
the middle of the box, which makes sense due to symmetry.

For momentum,

⟨p⟩ = ⟨ψ1|p|ψ1⟩

= ⟨ψ1| − iℏ
d

dx
|ψ1⟩

= −iℏ2
a

∫ a

0

sin
(π
a
x
)[ d

dx
sin
(π
a
x
)]

dx

= −iℏ2
a

∫ a

0

sin
(π
a
x
)
cos
(π
a
x
)
dx

= 0

where we have again used our list of definite integrals. This integral can also be evaluated
easily by using the double-angle formula: sin(2θ) = 2 sin θ cos θ. So, the average momentum
is zero, which makes sense since it is equally likely that the particle is moving to the left, or
to the right, within the box.

To get an idea of the magnitude of the energies, let’s consider the excitation energy of
an electron in the ethylene molecule (C2H4) from the ground state (n = 1) to the first
electronic excited state (n = 2). We will take the box length as twice the C=C bond length
of 1.4 Å = 2.8× 10−10 m. The excitation energy is

∆E = E2 − E1

=
ℏ2π2

2ma2
(22 − 12)

=
3(1.055× 10−34)2(3.142)2

2(9.109× 10−31)(2.8× 10−10)2

= 2.3× 10−18 J

= 14.4 eV
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which is roughly twice the energy corresponding to the experimental λmax from UV-vis
measurements, indicating our estimate of the “box” length was too small, although it does
provide the correct order of magnitude. If we use the longest H–H distance in ethylene (3.1
Å), then our estimate improves to 11.7 eV.

4.3 Extension to 2D

The particle in a box model can be extended to 2D systems (such as for electrons in graphene
sheets). Let us consider a particle confined to a 2D box of width a and length b with infinitely
high walls. The potential is given by

V =

{
0 , if 0 ≤ x ≤ a and 0 ≤ y ≤ b
∞ , if x < 0, x > a or y < 0, y > b

Inside the box, the time-independent Schrödinger equation is

− ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2

)
ψ = Eψ

and we assume that the wavefunction is separable, such that it can be written as product of
the form

ψ(x, y) = X(x)Y (y)

Inserting this into the Schrödinger equation gives

− ℏ2

2m

[
X ′′(x)Y (y) +X(x)Y ′′(y)

]
= EX(x)Y (y)

where the ′′ notation indicates the second derivative. Dividing through by XY , we obtain

− ℏ2

2m

X ′′

X
− ℏ2

2m

Y ′′

Y
= E

For this equation to be valid for all values of x and y, we require that both ratios on the
left-hand side are constants, which we write as Ex and Ey:

− ℏ2

2m

X ′′

X
= Ex

− ℏ2

2m

Y ′′

Y
= Ey

such that

E = Ex + Ey
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The two differential equations above have the same form as the Schrödinger equation for the
1D particle in a box:

− ℏ2

2m

d2

dx2
X = ExX

− ℏ2

2m

d2

dy2
Y = EyY

Thus, the solutions are

Xnx =

√
2

a
sin
(nxπ

a
x
)

with Enx =
ℏ2π2n2

x

2ma2

Yny =

√
2

b
sin
(nyπ

b
y
)

with Eny =
ℏ2π2n2

y

2mb2

So the total wavefunction and energy are

ψ =

√
2

a

√
2

b
sin
(nxπ

a
x
)
sin
(nyπ

b
y
)

with E =
ℏ2π2

2m

(
n2
x

a2
+
n2
y

b2

)

In the special case of a square box, a = b, and this simplifies to

ψ =
2

a
sin
(nxπ

a
x
)
sin
(nyπ

a
y
)

with E =
ℏ2π2

2ma2
(
n2
x + n2

y

)
Some of the solutions, such as (nx, ny) = (1, 2) and (nx, ny) = (2, 1), will have equal energies
and are termed “degenerate”.
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The energy level diagram and illustrations of the few lowest-energy wavefunctions are shown
below:

(1,1)

(2,1),(1,2)

(2,2)

(3,1),(1,3)

(3,2),(2,3)

(4,1),(1,4)
(3,3)

(nx,ny)

E

(nx, ny) = (2, 2)

(nx, ny) = (2, 1) (nx, ny) = (1, 2)

(nx, ny) = (1, 1)

4.4 Extension to 3D

Further extension of the particle in a box model to 3D follows the same logic as in the 2D
case. We take the box dimensions to be a, b, and c in the x, y, and z dimensions, respectively.

Inside the box, the time-independent Schrödinger equation is

− ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ = Eψ

and we assume that the wavefunction is separable, such that it can be written as product of
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the form
ψ(x, y, z) = X(x)Y (y)Z(z)

The solutions can be shown to be

Xnx =

√
2

a
sin
(nxπ

a
x
)

with Enx =
ℏ2π2n2

x

2ma2

Yny =

√
2

b
sin
(nyπ

b
y
)

with Eny =
ℏ2π2n2

y

2mb2

Znz =

√
2

c
sin
(nzπ

c
z
)

with Enz =
ℏ2π2n2

z

2mc2

The total wavefunction and energy are

ψ =

√
2

a

√
2

b

√
2

c
sin
(nxπ

a
x
)
sin
(nyπ

b
y
)
sin
(nzπ

c
z
)

with E =
ℏ2π2

2m

(
n2
x

a2
+
n2
y

b2
+
n2
z

c2

)

In the special case of a cubic box, a = b = c, and this simplifies to

ψ =

(
2

a

) 3
2

sin
(nxπ

a
x
)
sin
(nyπ

a
y
)
sin
(nyπ

a
z
)

with E =
ℏ2π2

2ma2
(
n2
x + n2

y + n2
z

)
Even more combinations of solutions, such as (nx, ny, nz) = (1, 1, 2), (nx, ny, nz) = (1, 2, 1),
and (nx, ny, nz) = (2, 1, 1), will be degenerate.

Let’s use the 3D particle in a box to approximate the energy levels for translation of an O2

molecule (molar mass of roughly 32 g/mol) in the atmosphere. For a temperature of 0◦C
and 1 atm pressure, one mole of molecules takes up a volume of 22.4 L, according to the
ideal gas law. Dividing by Avogadro’s number, this corresponds to a cubic “box” with sides
of 3.3× 10−9 m per molecule. We will take this as the “box” length.

The energy difference between the ground translational state and first excited state is:

∆E = E2 − E1

=
ℏ2π2

2ma2
(22 + 12 + 12 − 12 − 12 − 12)

=
3(1.055× 10−34)2(3.142)2

2(32× 10−3/6.022× 1023)(3.3× 10−9)2

= 2.8× 10−25 J

= 1.7× 10−4 kJ/mol

So the energy levels are separated by an extremely small amount of energy, compared to the
available thermal energy of RT = 2.3 kJ/mol. This is why we can approximate translational
energy levels as being continuous and not quantized in thermodynamics.



Chapter 5

The Harmonic Oscillator

5.1 Wavefunctions and Energies

The harmonic oscillator is a simple model for the vibration of chemical bonds. We can
approximate the Morse potential that is characteristic of the potential energy curve of a
diatomic molecule by a parabolic potential for the region near the equilibrium bond length.

V

x

Morse

Harmonic

While we can’t use a parabolic potential to model bond dissociation, it is a good model for
bond vibrations where the bond distorts about its equilibrium value.

36
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For the harmonic oscillator, the form of the parabolic potential is

V =
1

2
kx2

where k is the “spring constant” of the oscillator. It can be related to the reduced mass, µ,
and the vibrational frequency, ω, as

ω =

√
k

µ

The reduced mass for two atoms with masses m1 and m2 is

µ =
m1m2

m1 +m2

The time-independent Schrödinger equation for the 1D harmonic oscillator is

− ℏ2

2µ

d2

dx2
ψ +

1

2
kx2ψ = Eψ

The solution of this differential equation is not straightforward. We will show how to solve
for the energies using raising and lowering operators in Section 5.3. For now, we will assume
a form for the ground state and demonstrate that it is a solution. Let’s take

ψ = exp(−Cx2)
and determine the value for C.

Substituting this result into the Schrödinger equation, we have

− ℏ2

2µ

d2

dx2
e−Cx2

+
1

2
kx2e−Cx2

= Ee−Cx2

− ℏ2

2µ

d

dx

(
−2Cxe−Cx2

)
+

1

2
kx2e−Cx2

= Ee−Cx2

− ℏ2

2µ

(
−2Ce−Cx2

+ 4C2x2e−Cx2
)
+

1

2
kx2e−Cx2

= Ee−Cx2

(
ℏ2

µ
C − E

)
e−Cx2

+

(
1

2
k − 2ℏ2

µ
C2

)
x2e−Cx2

= 0

For this to be true for all values of x, we require both terms in parentheses to be zero. Thus,
we can solve for C by setting

2ℏ2

µ
C2 =

1

2
k

C2 =
µk

4ℏ2

C =

√
µk

2ℏ
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We obtain the corresponding energy as

E =
ℏ2

µ
C

=
ℏ2

µ

√
µk

2ℏ

=
ℏ
2

√
k

µ

=
1

2
ℏω

The (not yet normalized) ground-state solution for the harmonic oscillator is

ψ0 = exp

(
−
√
µk

2ℏ
x2
)

with E0 =
1

2
ℏω

It can be shown that general solution for the harmonic oscillator wavefunctions is

ψn = NnHn(q) exp

(
−1

2
q2
)

where q2 =

√
µk

ℏ
x2

and the corresponding energies are

En =

(
n+

1

2

)
ℏω with n = 0, 1, 2, . . .

All the energy levels are evenly spaced, and are separated by ∆E = ℏω.

In the general form of the wavefunction, the functions Hn(q) are the physicist’s Hermite
polynomials. These form a set of special functions

Hn(q) = (−1)n exp(q2) d
n

dqn
exp(−q2)

such that

H0(q) = 1

H1(q) = 2q

and higher-order forms are obtained from the recursion relation

Hn+1(q) = 2qHn(q)− 2nHn−1(q)
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Finally, Nn is a normalization constant of the form

Nn =
1√
2nn!

(√
µk

ℏπ

) 1
4

The first few wavefunctions and energy levels are plotted below:

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

E

x

5.2 Some Examples

For the harmonic oscillator ground state, the expectation value of position is

⟨x⟩ = ⟨0|x|0⟩

where we introduce the notation |n⟩ to denote state ψn. Substituting the ground-state
wavefunction, this gives

⟨x⟩ =
(√

µk

ℏπ

) 1
2
∫ ∞

−∞
x exp

(
−
√
µk

ℏ
x2
)
dx

but this is the integral of an odd function over all space, so ⟨x⟩ = 0. This means that the
average displacement of the oscillator is the equilibrium bond length, which makes sense due
to symmetry.

Returning to our example of the O2 molecule, its vibrational frequency is 1580 cm−1. The
energy difference between vibrational levels is

∆E = ℏω
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and converting units gives ∆E = 18.9 kJ/mol. This is considerably higher than the available
thermal energy at room temperature (RT = 2.5 kJ/mol), so only the ground vibrational state
is likely to be occupied. At elevated temperatures, or for lower vibrational frequencies, more
vibrational levels will be occupied.

5.3 Raising and Lowering Operators

Let us define two new operators that allow us
to move up and down the “ladder” of harmonic
oscillator states:

Lowering operator: a−ψn =
√
nψn−1

Raising operator: a+ψn =
√
n+ 1ψn+1

In Dirac notation, these are

Lowering operator: a−|n⟩ =
√
n|n− 1⟩

Raising operator: a+|n⟩ =
√
n+ 1|n+ 1⟩

E

x

â

â

â
+

â
+

All of the wavefunctions can be obtained from the ground-state wavefunction using the
raising operator

ψn =
1√
n!

(
a+
)n
ψ0

We can also consider sequential application of a− and a+:

a−a+|n⟩ =
√
n+ 1 a−|n+ 1⟩ = (n+ 1)|n⟩

a+a−|n⟩ =
√
n a+|n− 1⟩ = n|n⟩

Subtracting these two equations gives the commutator

[a−, a+] = (n+ 1)− n = 1

It is not obvious what the exact forms of the raising and lowering operators should be and
they depend on the system. The operators used here for the harmonic oscillator are different
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than the raising and lowering operators that we will use for angular momentum for the rigid
rotor problem in Chapter 7. Ultimately, a definition was proposed and we will show that it
works.

We will define the raising and lowering operators as

a− =

√
µω

2ℏ

(
x+

i

µω
p

)

a+ =

√
µω

2ℏ

(
x− i

µω
p

)
With this definition, it is straightforward to show that

x2 =
ℏ

2µω

(
a− + a+

)2
p2 = −ℏµω

2

(
a− − a+

)2
To solve for the harmonic oscillator energies using raising and lowering operators, we first
need to re-write the Hamiltonian.

H = − ℏ2

2µ

d2

dx2
+

1

2
kx2

=
p2

2µ
+

1

2
kx2

= − 1

2µ

ℏµω
2

(
a− − a+

)2
+

1

2
k

ℏ
2µω

(
a− + a+

)2
= −ℏω

4

(
a− − a+

)2
+

ℏµω2

4µω

(
a− + a+

)2
=

ℏω
4

[(
a− + a+

)2 − (a− − a+)2]
=

ℏω
2

(
a−a+ + a+a−

)
We can also use the commutator to simplify this slightly further. Since

[a−, a+] = a−a+ − a+a− = 1

then
a−a+ = a+a− + 1



42 Chapter 5. The Harmonic Oscillator

Making this substitution, the harmonic oscillator Hamiltonian is

H =

(
a+a− +

1

2

)
ℏω

This form allows rapid evaluation of the harmonic oscillator energies:

H|n⟩ =

(
a+a− +

1

2

)
ℏω|n⟩

=

(
n+

1

2

)
ℏω|n⟩

since a+a−|n⟩ = n|n⟩. Thus, the eigenvalues are

En =

(
n+

1

2

)
ℏω

Finally, we can demonstrate that our definition of the a− and a+ operations gives the ex-
pected raising and lowering action.

Recall that the Hamiltonian is

H =
ℏω
2

(
a−a+ + a+a−

)
Using the commutator, we can then write the Hamiltonian as either

H =

(
a+a− +

1

2

)
ℏω

H =

(
a−a+ − 1

2

)
ℏω

Starting from the first equation for H, the Schrödinger equation for state |n⟩ is

H|n⟩ = En|n⟩(
a+a− +

1

2

)
ℏω|n⟩ = En|n⟩

We left multiply both sides by a− to obtain(
a−a+a− +

1

2
a−
)
ℏω|n⟩ = Ena

−|n⟩(
a−a+ +

1

2

)
ℏωa−|n⟩ = Ena

−|n⟩
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Now, subtract ℏωa−|n⟩ from both sides

(
a−a+ − 1

2

)
ℏωa−|n⟩ = (En − ℏω)a−|n⟩

Ha−|n⟩ = (En − ℏω)a−|n⟩

Therefore, a−|n⟩ is an eigenfunction with eigenvalue En−ℏω = En−1, (because the quantum
harmonic oscillator’s energy spacing is ℏω) so this has the action of the lowering operator.

Similarly, starting from the second equation for H, the Schrödinger equation for state |n⟩ is

H|n⟩ = En|n⟩

(
a−a+ − 1

2

)
ℏω|n⟩ = En|n⟩

We left multiply both sides by a+ to obtain(
a+a−a+ − 1

2
a+
)
ℏω|n⟩ = Ena

+|n⟩(
a+a− − 1

2

)
ℏωa+|n⟩ = Ena

+|n⟩

Now, add ℏωa+|n⟩ to both sides

(
a+a− +

1

2

)
ℏωa+|n⟩ = (En + ℏω)a+|n⟩

Ha+|n⟩ = (En + ℏω)a+|n⟩

Therefore, a+|n⟩ is an eigenfunction with eigenvalue En + ℏω = En+1, so this has the action
of the raising operator.

5.4 Selection Rules for Vibrational Spectroscopy

Using raising and lowering values can also greatly simplify evaluation of expectation values
involving functions of position and momentum.
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As an example, we can evaluate the expectation value of position for any state, n:

⟨x⟩ = ⟨n|x|n⟩

=

√
ℏ

2µω
⟨n|a− + a+|n⟩

=

√
ℏ

2µω
⟨n|
(√

n|n− 1⟩+
√
n+ 1|n+ 1⟩

)
=

√
ℏ

2µω

(√
n⟨n|n− 1⟩+

√
n+ 1⟨n|n+ 1⟩

)
=

√
ℏ

2µω

(√
nδn,n−1 +

√
n+ 1δn,n+1

)
= 0

due to orthogonality of the wavefunctions.

For molecular vibrations to be observed in IR spectroscopy, they must result in a net change
in dipole moment. For a transition from state n to state n′, this requirement is that the
transition dipole moment

xnn′ = ⟨n|x|n′⟩

is non-zero for an allowed transition. In the IR spectrum, the intensity of the peak is
proportional to x2nn′ .

For the harmonic oscillator,

xnm = ⟨n|x|n′⟩

=

√
ℏ

2µω
⟨n|a− + a+|n′⟩

=

√
ℏ

2µω

(√
n′δn,n′−1 +

√
n′ + 1δn,n′+1

)
so, xnn′ will be zero unless either n = n′ − 1 or n = n′ + 1 due to orthogonalitry.

Thus, allowed transitions occur between states with ∆n = ±1 or ∆E = ±ℏω.

In IR spectroscopy, we generally observe the fundamental vibration, where the molecule is
excited from the ground state (n = 0) to the first excited vibrational state (n = 1).
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Approximation Methods

It is not always possible to solve the Schrödinger equation exactly for a given system, and
indeed having an exactly solvable system is the exception, rather than the rule, in QM. Here,
we will consider two different approximation methods.

6.1 Perturbation Theory

Perturbation theory works when the system under study is very similar to a known model
system, but not quite the same. Common examples are for applying an electric or magnetic
field to an atom or molecule.

Assume we have solved the Schrödinger equation for our known model system, with Hamil-
tonian H◦, and the solutions are

H◦ψ◦
n = E◦

nψ
◦
n

Now we introduce a small perturbation term to the Hamiltonian, H′, which will result in
a different set of wavefunctions and energies. We cannot solve the problem exactly for this
new Hamiltonian but, because the contribution of H′ is assumed to be small, the solution
should be similar to that for H◦.

The new (perturbed) problem to be solved is

Hψn = Enψn where H = H◦ + λH′

and λ is a coupling strength parameter used to keep track of the level of approximation.

H(λ = 0) = H◦

H(λ = 1) = H

45
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The method of solution is to postulate

En = E◦
n + λE(1)

n + λ2E(2)
n + . . .

ψn = ψ◦
n + λψ(1)

n + λ2ψ(2)
n + . . .

where we add a series of correction terms to the zeroth-order solution.

Substituting into the SE gives

(H◦+λH′)(ψ◦
n+λψ

(1)
n +λ2ψ(2)

n + . . .) = (E◦
n+λE

(1)
n +λ2E(2)

n + . . .)(ψ◦
n+λψ

(1)
n +λ2ψ(2)

n + . . .)

This must be true for every value of λ between 0 and 1, so it must be true order by order.

To order λ0: H◦ψ◦
n = E◦

nψ
◦
n ← idealized problem, known solution

To order λ1: H◦ψ
(1)
n +H′ψ◦

n = E◦
nψ

(1)
n + E

(1)
n ψ◦

n (∗)

To order λ2: H◦ψ
(2)
n +H′ψ

(1)
n = E◦

nψ
(2)
n + E

(1)
n ψ

(1)
n + E

(2)
n ψ◦

n

To find the first-order correction to the energy, multiply (∗) by ψ◦
n and integrate. This gives

⟨ψ◦
n|H◦|ψ(1)

n ⟩+ ⟨ψ◦
n|H′|ψ◦

n⟩ = E◦
n⟨ψ◦

n|ψ(1)
n ⟩+ E(1)

n ⟨ψ◦
n|ψ◦

n⟩

but ⟨ψ◦
n|H◦|ψ(1)

n ⟩ = E◦
n⟨ψ◦

n|ψ
(1)
n ⟩ and ⟨ψ◦

n|ψ◦
n⟩ = 1. Thus

E(1)
n = ⟨ψ◦

n|H′|ψ◦
n⟩

is the first-order energy correction.

For the first-order correction to the wavefunction, we let

ψ(1)
n =

∑
m

cmnψ
◦
m

Recall that we can write any function as a linear combination of the zeroth-order wavefunc-
tions, since they are complete and form a basis.

We substitute this definition into (∗) to give

(H◦ − E◦
n)
∑
m

cmnψ
◦
m = −(H′ − E(1)

n )ψ◦
n

Next, we multiply through by ψ◦
ℓ and integrate∑

m

cmn⟨ψ◦
ℓ |(H◦ − E◦

n)|ψ◦
m⟩ = −⟨ψ◦

ℓ |(H′ − E(1)
n |ψ◦

n⟩∑
m

cmn(E
◦
ℓ − E◦

n)⟨ψ◦
ℓ |ψ◦

m⟩ = −⟨ψ◦
ℓ |H′|ψ◦

n⟩+ E(1)
n ⟨ψ◦

ℓ |ψ◦
n⟩

cℓn(E
◦
ℓ − E◦

n) = −⟨ψ◦
ℓ |H′|ψ◦

n⟩+ E(1)
n δℓn
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This gives two cases. If ℓ = n, we recover the first-order energy correction. If ℓ ̸= n,

cℓn = −⟨ψ
◦
ℓ |H′|ψ◦

n⟩
E◦

ℓ − E◦
n

Returning to our definition of ψ
(1)
n , the first-order correction to the wavefunction is

ψ(1)
n =

∑
m,m ̸=n

⟨ψ◦
m|H′|ψ◦

n⟩
E◦

n − E◦
m

ψ◦
m

Similarly, for the second-order correction to the energy, we consider the order-λ2 equation,
multiply through by ψ◦

n and integrate:

⟨ψ◦
n|H◦|ψ(2)

n ⟩+ ⟨ψ◦
n|H′|ψ(1)

n ⟩ = E◦
n⟨ψ◦

n|ψ(2)
n ⟩+ E(1)

n ⟨ψ◦
n|ψ(1)

n ⟩+ E(2)
n ⟨ψ◦

n|ψ◦
n⟩

E◦
n⟨ψ◦

n|ψ(2)
n ⟩+ ⟨ψ◦

n|H′|ψ(1)
n ⟩ = E◦

n⟨ψ◦
n|ψ(2)

n ⟩+ E(1)
n (0) + E(2)

n (1)

E(2)
n = ⟨ψ◦

n|H′|ψ(1)
n ⟩

Thus, the second-order energy correction is

E(2)
n =

∑
m,m ̸=n

⟨ψ◦
m|H′|ψ◦

n⟩
E◦

n − E◦
m

⟨ψ◦
n|H′|ψ◦

m⟩

E(2)
n =

∑
m,m ̸=n

|⟨ψ◦
m|H′|ψ◦

n⟩|2

E◦
n − E◦

m

It is often useful to evaluate the second-order energy correction approximately. If we replace
all the energy differences E◦

n − E◦
m by their average value, ∆E, then

E(2)
n =

1

∆E

∑
m,m ̸=n

⟨ψ◦
n|H′|ψ◦

m⟩⟨ψ◦
m|H′|ψ◦

n⟩

If we add and subtract the m = n term, this becomes

E(2)
n =

1

∆E

∑
m

⟨ψ◦
n|H′|ψ◦

m⟩⟨ψ◦
m|H′|ψ◦

n⟩ −
1

∆E
⟨ψ◦

n|H′|ψ◦
n⟩⟨ψ◦

n|H′|ψ◦
n⟩

but the wavefunctions form a complete set, so we can use the closure relation∑
m

|ψ◦
m⟩⟨ψ◦

m| = 1

Then, the second-order energy correction simplified to

E(2)
n =

1

∆E

(
⟨ψ◦

n|H′2|ψ◦
n⟩ − ⟨ψ◦

n|H′|ψ◦
n⟩2
)

which is given in terms of just the ground state and we only need the average excitation
energy. This is called the closure approximation. It is valid for the ground state when all
excited states are much higher in energy.
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6.2 An Example of Perturbation Theory

A harmonic oscillator is perturbed by an electric field of strength ε in the x-direction. We
want to determine the perturbation correction to the energy through second order, assuming
the oscillating mass has a charge e.

The perturbation is
H′ = εex

The first-order correction is

E(1)
n = ⟨n|H′|n⟩

= εe⟨n|x|n⟩
= 0

The second-order correction is

E(2)
n =

∑
m,m ̸=n

|⟨ψ◦
m|H′|ψ◦

n⟩|2

E◦
n − E◦

m

=
∑

m,m ̸=n

ε2e2|⟨ψ◦
m|x|ψ◦

n⟩|2

E◦
n − E◦

m

However, from our discussion of the harmonic oscillator selection rules, we know that

⟨n|x|m⟩ = 0 unless m = n± 1

⟨n|x|n− 1⟩ =

√
ℏ

2µω

√
n

⟨n|x|n+ 1⟩ =

√
ℏ

2µω

√
n+ 1

Therefore, we only need to consider these two states in the sum and the second-order energy
correction is

E(2)
n = ε2e2

(
ℏ

2µω

)[
n

E◦
n − E◦

n−1

+
n+ 1

E◦
n − E◦

n+1

]
= ε2e2

(
ℏ

2µω

)[
n

ℏω
− n+ 1

ℏω

]
= − ε2e2

2µω2

The total energy, to second order, for the harmonic oscillator in the electric field is

E =

(
n+

1

2

)
ℏω − ε2e2

2µω2

and we see that the energy decreases with the square of the field strength.
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6.3 The Variational Principle

An alternative to perturbation theory is to make use of the variational principle. This allows
us to propose flexible forms for the wavefunction with adjustable parameters to be optimized.

The Variational Principle: For a time-independent Hamiltonian with ground-state energy
E0, if ϕ is any normalized, well-behaved function of the electron coordinates and satisfies
the boundary conditions, then

E = ⟨ϕ|H|ϕ⟩ ≥ E0

This gives an upper bound to the ground-state energy.

To prove the variational principle, we expand ϕ in terms of the eigenfunctions of H

ϕ =
∑
i

aiψi where Hψi = Eiψi

then

⟨ϕ|H|ϕ⟩ =
∑
i

∑
j

a∗i aj⟨ψi|H|ψj⟩

=
∑
i

∑
j

a∗i ajEj⟨ψi|ψj⟩

=
∑
i

∑
j

a∗i ajEjδij

=
∑
j

|aj|2Ej

and since E0 is the ground-state energy, Ej ≥ E0

∴ ⟨ϕ|H|ϕ⟩ ≥
∑
j

|aj|2E0

and ϕ is normalized, so
∑

j |aj|2 = 1

∴ ⟨ϕ|H|ϕ⟩ ≥ E0

Note that, if ϕ is not normalized, this becomes

⟨ϕ|H|ϕ⟩
⟨ϕ|ϕ⟩

≥ E0

If the wavefunction, ϕ, depends on an adjustable parameter, A, then the energy is minimized
when

∂E

∂A
= 0
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6.4 An Example using the Variational Principle

Let’s consider a quartic oscillator, with potential

V = cx4

Without attempting to solve the Schrödinger equation for this potential, we can approximate
the ground-state energy by using a trial wavefunction with the same form as the harmonic
oscillator ground state

ϕ =
(a
π

)1/4

exp
(
−a
2
x2
)

which is already normalized.

The expectation value for the energy is

E = ⟨ϕ|H|ϕ⟩

=

√
a

π

∫ ∞

−∞
e−

a
2
x2

(
− ℏ2

2µ

d2

dx2
+ cx4

)
e−

a
2
x2

dx

Evaluating the second derivative,

d2

dx2
e−

a
2
x2

= −ae−
a
2
x2

+ a2x2e−
a
2
x2

The energy is then

E =

√
a

π

∫ ∞

−∞

(
ℏ2

2µ
ae−ax2 − ℏ2

2µ
a2x2e−ax2

+ cx4e−ax2

)
dx

=

√
a

π

(
ℏ2

2µ
a

√
π

a
− ℏ2

2µ
a2

1

2

√
π

a3
+ c

3

4

√
π

a5

)
=

ℏ2a
4µ

+
3c

4a2

where we have used our table of definite integrals.

Now, to find the value of the a parameter to minimize the energy, we take

dE

da
= 0

d

da

(
ℏ2a
4µ

+
3c

4a2

)
= 0

ℏ2

4µ
− 3c

2a3
= 0

3c

a3
=

ℏ2

2µ

a =

(
6cµ

ℏ2

)1/3
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Finally, the minimum energy itself is

E =
ℏ2

4µ

(
6cµ

ℏ2

)1/3

+
3c

4

(
ℏ2

6cµ

)2/3

=
ℏ
2

(
3ℏc
4µ2

)1/3

+
ℏ
4

(
3ℏc
4µ2

)1/3

=
3ℏ
8

(
3ℏc
4µ2

)1/3

which we know is an upper bound to the true ground state energy.



Chapter 7

The Rigid Rotor

7.1 Wavefunctions and Energies

The rigid rotor is a model for the rotation of a molecule about its fixed centre of mass. This
can be related to rotation of a single particle with reduced mass µ about a fixed origin.

m
1

m
2

−→
µ

This problem is solved most naturally in spherical polar coordinates:

x

y

z

φ

θ

(r,θ,φ)
Conversion between spherical and Cartesian coordinates:

x = r sin θ cosϕ r = (x2 + y2 + z2)
1/2

y = r sin θ sinϕ cos θ = z/r
z = r cos θ tanϕ = y/x

The volume element for integration is

dx dy dz = r2 sin θdr dθ dϕ

52



7.1. Wavefunctions and Energies 53

In 3D, the time-independent Schrödinger equation is

Hψ =

(
− ℏ2

2µ
∇2 + V

)
ψ = Eψ

where ∇2 is the Laplacian operator.

In Cartesian coordinates,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Using partial derivatives, it can be shown that, in spherical coordinates

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂ϕ2

)
=

∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂ϕ2

)
These two forms differ only in the ∂/∂r terms and either can be used depending on which is
more convenient.

The Schrödinger equation is solved by separation of variables. We postulate that the wave-
function can be written as a product of separate radial and angular terms:

ψ = R(r)Y (θ, ϕ)

This is valid for a central potential, meaning that V = V (r) only and is not also a function
of angle.

For the rigid rotor problem, we have V = 0. All of the energy is kinetic energy of rotation
related to the angular momentum. Also, as we are considering rotation of a rigid molecule
(fixed bond length), r is the constant distance between the reduced mass and center of
rotation.

Since r is constant, ∂/∂r = 0 and the Hamiltonian is therefore

H = − ℏ2

2µ

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]

To highlight that we are dealing with a constant distance, we will define the moment of
inertia as

I = µr2

and write the Hamiltonian as

H =
L2

2I



54 Chapter 7. The Rigid Rotor

where we define the angular momentum operator as

L2 = −ℏ2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]

We also assume a further separation of angular variables, such that

Y (θ, ϕ) = P (θ)Φ(ϕ)

The Schrödinger equation to be solved is

1

2I
L2P (θ)Φ(ϕ) = EP (θ)Φ(ϕ)

Where we have taken R(r) = 1 for simplicity. We know that R(r) must be a constant since
the Hamiltonian does not depend on r and the particular value does not matter since we
require the whole wavefunction to be normalized.

Using the definition of L2 above,

−ℏ2

2I

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
PΦ = EPΦ

Φ
1

sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
+ P

1

sin2 θ

∂2Φ

∂ϕ2
= −2IE

ℏ2
PΦ

Next, we multiply through by sin2 θ and divide through by PΦ

sin θ

P

∂

∂θ

(
sin θ

∂P

∂θ

)
+

1

Φ

∂2Φ

∂ϕ2
= −2IE

ℏ2
sin2 θ

sin θ

P

∂

∂θ

(
sin θ

∂P

∂θ

)
+

2IE

ℏ2
sin2 θ = − 1

Φ

∂2Φ

∂ϕ2

As the left-hand side depends only on θ and the right-hand side depends only on ϕ, both sides
must equal a constant, which we will take as m2. This gives us two differential equations:

sin θ

P

∂

∂θ

(
sin θ

∂P

∂θ

)
+

2IE

ℏ2
sin2 θ = m2

− 1

Φ

∂2Φ

∂ϕ2
= m2

The second of these can be rewritten as

∂2Φ

∂ϕ2
+m2Φ = 0
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which has solutions
Φ = Ae±imϕ

We apply the boundary condition that Φ is a continuous, single-valued function so

Φ(ϕ+ 2π) = Φ(ϕ)

This means that

Ae±im(ϕ+2π) = Ae±imϕ

e±i2πm = 1

cos(2πm)± i sin(2πm) = 1

which requires m = 0,±1,±2, . . .

To find the value of the normalization constant, A,∫ 2π

0

Φ∗Φdϕ = 1

A2

∫ 2π

0

eimϕe−imϕdϕ = 1

A2

∫ 2π

0

dϕ = 1

A2(2π) = 1

A =
1√
2π

Therefore, the solution is

Φm =
1√
2π

eimϕ with m = 0,±1,±2, . . .

The solutions to the other differential equation, involving P , are a set of special functions
termed the Legendre polynomials (for m = 0) and the associated Legendre functions (for
m ̸= 0). These are denoted Pℓ,m. Together, the total wavefunctions are

Yℓ,m(θ, ϕ) = Nℓ,mPℓ,m(θ)e
imϕ with ℓ = 0, 1, 2, . . . and m = 0,±1, . . . ,±ℓ

where Nℓ,m is a normalization constant. These are termed the spherical harmonics.

The range of allowable values for m is bounded, and the spherical harmonic functions would
go to zero for m > ℓ or m < −ℓ.
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The first few spherical harmonic functions are:

Y0,0 =

√
1

4π

Y1,0 =

√
3

4π
cos θ

Y1,1 =

√
3

8π
sin θeiϕ

Y1,−1 =

√
3

8π
sin θe−iϕ

Y2,0 =

√
5

16π

(
3 cos2 θ − 1

)
Y2,1 =

√
15

8π
sin θ cos θeiϕ

Y2,−1 =

√
15

8π
sin θ cos θe−iϕ

Y2,2 =

√
15

32π
sin2 θe2iϕ

Y2,−2 =

√
15

32π
sin2 θe−2iϕ

These are difficult to visualize due to the imaginary components. Polar plots showing the θ
dependence of the first few spherical harmonics are shown below and reveal their character-
istic shapes.
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With these wavefunctions, it can be shown that the energy eigenvalues are

Eℓ =
ℏ2

2I
ℓ(ℓ+ 1)

However, it is easier to derive this result using raising and lowering operators, similar to
what we did for the harmonic oscillator.

Finally, the energy level diagram for the rigid rotor is shown below. Note that there are
many degenerate levels since the energy depends only on ℓ, and not on m.

E

Y0,0

Y1,−1 Y1,0 Y1,1

Y2,−2 Y2,−1 Y2,0 Y2,1 Y2,2

7.2 Example for Molecular Rotation

Returning to our O2 example, the two atomic masses are 16.0 g/mol, so the reduced mass is
8.0 g/mol or 1.33× 1026 kg per molecule. Also, the bond length is 1.21 Å or 1.21× 10−10 m.
The spacing between the first two rotational levels is

∆E = E1,0 − E0,0

=
ℏ2

2µr2
[1(1 + 1)− 0(0 + 1)]

=
(1.055× 10−34)2

(1.33× 10−26)(1.21× 10−10)2

= 5.7× 10−23 J

= 0.034 kJ/mol

The spacing of the rotational energy levels is greater than for the translational energy levels.
However, it is still small compared to the thermal energy at room temperature (RT = 2.5
kJ/mol), so the rotational levels can be treated classically in thermodynamics.
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7.3 Angular Momentum Operators and Commutators

Here, we define various angular momentum operators. Classically, the angular momentum
is the cross product of position and momentum, and we will use this same relation for the
QM operators.

(Lx,Ly,Lz) = (x, y, z)× (px, py, pz)

Recall that there are two types of vector products. The usual dot product is

(a, b, c) · (u, v, w) = au+ bv + cw

and is a scalar (single number). The cross product is

(a, b, c)× (u, v, w) = (bw − cv, cu− aw, av − bu)

and is a vector that is perpendicular to both of the two input vectors.

Therefore, the components of the angular momentum are

Lx = ypz − zpy
Ly = zpx − xpz
Lz = xpy − ypx

The individual components of the angular momentum operator do not commute and

[Lx,Ly] = iℏLz

[Ly,Lz] = iℏLx

[Lz,Lx] = iℏLy

To show this for the case of [Lx,Ly],

[Lx,Ly] = [ypz − zpy, zpx − xpz]
= [ypz, zpx]− [ypz, xpz]− [zpy, zpx] + [zpy, xpz]

= [ypz, zpx]− [ypz, xpz]− [zpy, zpx] + [zpy, xpz]

= [ypz, zpx]− 0− 0 + [zpy, xpz]

= ypx[pz, z] + xpy[z, pz]

= ypx(−iℏ) + xpy(iℏ)
= iℏ(xpy − ypx)
= iℏLz

The square of the total angular momentum is

L2 = L2
x + L2

y + L2
z
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L2 commutes with any of the individual angular momentum components

[L2,Lx] = [L2,Ly] = [L2,Lz] = 0

To show this for the case of Lz,

[L2,Lz] = [L2
x + L2

y + L2
z,Lz]

= [L2
x,Lz] + [L2

y,Lz] + [L2
z,Lz]

= (L2
xLz − LzL2

x) + (L2
yLz − LzL2

y) + 0

= (L2
xLz − LxLzLx + LxLzLx − LzL2

x) + (L2
yLz − LyLzLy + LyLzLy − LzL2

y)

= Lx(LxLz − LzLx) + (LxLz − LzLx)Lx + Ly(LyLz − LzLy) + (LyLz − LzLy)Ly

= Lx[Lx,Lz] + [Lx,Lz]Lx + Ly[Ly,Lz] + [Ly,Lz]Ly

= Lx(−iℏLy) + (−iℏLy)Lx + Ly(iℏLx) + (iℏLx)Ly

= 0

Since they commute, it is possible to have a simultaneous set of eigenfunctions for L2 and
Lz. However, since Lz does not commute with Lx and Ly, these will not be eigenfunctions
of the other two angular momentum components.

Let Yℓ,m = |ℓ,m⟩ be an eigenfunction of L2 and Lz. We write

L2|ℓ,m⟩ = ℓ(ℓ+ 1)ℏ2|ℓ,m⟩ for ℓ = 0, 1, 2, . . .

Lz|ℓ,m⟩ = mℏ|ℓ,m⟩ for m = 0,±1, . . . ,±ℓ

The powers of ℏ make sense based on dimensional analysis. The actual eigenvalues can be
found using raising and lowering operators, although the proof is rather lengthy.

7.4 Selection Rules for Rotational Spectroscopy

Similar to the use of infrared light in vibrational spectroscopy, far-infrared or microwave
radiation can be used to measure the rotational spectrum of a molecule. For transitions
between rotational states ℓ and ℓ′ to be observed, the transition dipole moment must be
non-zero:

⟨ℓm|z|ℓ′m′⟩ ≠ 0

(assuming z-polarized radiation) and the molecule must also have a permanent dipole mo-
ment.

Using commutators of the angular momentum operators, it can be shown that rotational
transitions must obey the selection rule

∆ℓ = ±1
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to have a non-zero transition dipole. This means that the energy difference between rota-
tional levels ℓ and (ℓ+ 1) is

∆E = Eℓ+1 − Eℓ

=
ℏ2

2I

[
(ℓ+ 1)(ℓ+ 2)− ℓ(ℓ+ 1)

]
=

ℏ2

2I
(2ℓ+ 2)

=
ℏ2

I
(ℓ+ 1)

In microwave spectroscopy, it is common to give the absorption frequency of the transition
as

ω = 2B(ℓ+ 1)

where we have used ∆E = ℏω. B is called the rotational constant of the molecule and is
defined as

B =
ℏ2

2I

As we saw in our previous example, the spacing between rotational energy levels is much
smaller than between vibrational energy levels. However, rotation gives fine structure to
the vibrational spectrum. The resulting rotational-vibrational spectra typically have two
symmetric branches for each vibrational transition. The higher-frequency is called the R
branch and corresponds to the ∆ℓ = +1 transitions, while the lower-frequency is called the
P branch and corresponds to the ∆ℓ = −1 transitions.

7.5 Ro-Vibrational Spectroscopy

The vibrational spectrum of a diatomic molecule will have a fine structure associated with
rotational transitions. The combined vibrational and rotational energies, using the harmonic
oscillator and rigid rotor models are:

Evib,rot =

(
n+

1

2

)
ℏω +

ℏ2

2I
ℓ(ℓ+ 1)

For an IR adsorption spectrum, only the n = 0 to n = 1 transition is observed. Also,
the rotational selection rules require ∆ℓ = ±1. These two options give energies for the
ro-vibrational transitions of

∆E =

{
ℏω + ℏ2

I
(ℓ+ 1) for ℓ = 0, 1, 2, . . .

ℏω − ℏ2
I
ℓ for ℓ = 1, 2, 3, . . .
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The top result corresponds to ∆ℓ = 1 and gives the R branch of the spectrum, while the
bottom result corresponds to ∆ℓ = −1 and gives the P branch. The relative intensities of
the ro-vibrational peaks can be approximated using the populations in each level, ℓ, from
which the transition originates. Here,

Nℓ = N0(2ℓ+ 1) exp

[
−Bℓ(ℓ+ 1)

kBT

]
where kB is Boltzmann’s constant and T is absolute temperature.



Chapter 8

The Hydrogen Atom

8.1 Wavefunctions and Energies

For a hydrogen-like atom, we consider how the electron moves in the central potential due
to the nucleus.

If the electron has charge −e, we take the nuclear charge to be Ze, where Z is the atomic
number. Z = 1 for the particular case of hydrogen, but can be greater for other hydrogen-like
atoms, such as He+.

r

e
−

Z
+

The potential is

V = − Ze2

4πϵ0r

and arises from the electrostatic attraction between
the electron and nucleus.

The 4πϵ0 term in the denominator is the “vacuum
permittivity”.

Therefore, the hydrogen-atom Hamiltonian is

H = − ℏ2

2me

∇2 − Ze2

4πϵ0r

where me is the electron mass (not the reduced mass since we considering motion of a

62
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single electron about the fixed nucleus). Substituting the definition of the Laplacian and L2

operators,

H = − ℏ2

2me

(
∂2

∂r2
+

2

r

∂

∂r

)
+

1

2mer2
L2 − Ze2

4πϵ0r

The Schrödinger equation is solved using separation of variables. Let the wavefunction be

ψ(r, θ, ϕ) = R(r)Yℓ,m(θ, ϕ)

We use the spherical harmonics for the angular part, since the angular part of the Hamilto-
nian is the same as for the rigid rotor problem.

Therefore, the time-independent Schrödinger equation for the radial term of the H atom
wavefunction is:

− ℏ2

2me

(
∂2R

∂r2
+

2

r

∂R

∂r

)
+
ℓ(ℓ+ 1)ℏ2

2mer2
R− Ze2

4πϵ0r
R = ER

We will solve this equation for the H-atom ground state by proposing a solution and demon-
strating that it works. We let

R = Ae−ar

Then, the required derivatives are

dR

dr
= −Aae−ar = −aR

d2R

dr2
= Aa2e−ar = a2R

Also, for the ground state, ℓ = 0, so the Schrödinger equation becomes

− ℏ2

2me

(
d2R

dr2
+

2

r

dR

dr

)
− Ze2

4πϵ0r
R = E0R

− ℏ2

2me

(
a2R− 2a

r
R

)
− Ze2

4πϵ0r
R = E0R(

ℏ2a
me

− Ze2

4πϵ0

)
R

r
=

(
ℏ2a2

2me

+ E0

)
R

For this to be true for all values of r, both terms in parentheses must be zero, so we can
write

E0 = −
ℏ2a2

2me
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and

ℏ2a
me

=
Ze2

4πϵ0

a =
Ze2me

4πϵ0ℏ2

For simplicity, the Bohr radius is defined as

a0 =
4πϵ0ℏ2

e2me

so that a = Z/a0. Substituting this result back into the energy for the ground state of the
H atom

E0 = −
ℏ2Z2

2mea20

General solution of the Schrödinger equation for the radial term for all excited states, n, is
not at all trivial and, like for the harmonic oscillator and rigid rotor, involves a set of special
functions. It can be shown that the general solution for the H-atom energies is

En = − ℏ2Z2

2mea20n
2

The corresponding wavefunctions are

ψn,ℓ,m = Rnℓ(r)Yℓ,m(θ, ϕ) with n = 1, 2, . . . , ℓ = 0, 1, . . . (n− 1), and m = 0,±1, . . . ,±ℓ

and the radial functions are

Rn,ℓ = −

√
(n− ℓ− 1)!

2n[(n+ 1)!]3

(
2Z

na0

)ℓ+3/2

rℓ exp

(
− Zr
na0

)
L2ℓ+1
n+1

(
2Zr

na0

)
where the set of special functions L2ℓ+1

n+1

(
2Zr
na0

)
are the associated Laguerre functions.

The first few H-atom wavefunctions (n = 1, 2) are given by

ψ100 =
1√
π

(
Z

a0

)3/2

exp

(
−Zr
a0

)
ψ200 =

1√
32π

(
Z

a0

)3/2(
2− Zr

a0

)
exp

(
−Zr
2a0

)
ψ210 =

1√
32π

(
Z

a0

)3/2(
Zr

a0

)
exp

(
−Zr
2a0

)
cos θ

ψ21±1 =
1√
64π

(
Z

a0

)3/2(
Zr

a0

)
exp

(
−Zr
2a0

)
sin θe±iϕ
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The pattern of energy level is

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3
n = 4 — 4s — 4p — 4d — 4f 7 f states, m = 0,±1,±2,±3
n = 3 — 3s — 3p — 3d 5 d states, m = 0,±1,±2

n = 2 — 2s — 2p 3 p states, m = 0,±1

n = 1 — 1s 1 s states, m = 0

All the H-atom energies depend only on n and all different ℓ,m values are degenerate.
However, the ℓ,m degeneracy is broken in the presence of electric or magnetic fields, and in
multi-electron atoms.

8.2 Hartree Atomic Units

Carrying around constants such as ℏ, me, e, a0, and 4πϵ0 complicates equations and can lead
to errors in solving numerical problems. To eliminate these constants, we define a new set
of units, called Hartree atomic units. Here

ℏ = me = e = 4πϵ0 = 1

This choice causes the Bohr radius to also be a0 = 1 and the H-atom energies are simply

En = − 1

2n2

From atomic units (abbreviated a.u.), conversion factors to SI units are

Quantity Atomic units SI units
Mass me = 1 9.1091× 10−31 kg
Charge e = 1 1.6021× 10−19 C
Length a0 = 1 5.2617× 10−11 m
Momentum ℏ = 1 1.0545× 10−34 Js
Permittivity 4πϵ0 = 1 1.1126× 10−10 C2/Jm
Energy e2/(4πϵ0a0) = 1 4.3594× 10−18 J

It is generally more practical to carry out QM calculations in atomic units and convert to
SI at the end then trying to work in SI units throughout.
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8.3 Visualizing the Hydrogen Atomic Orbitals

What do the H-atom wavefunctions look like? The real functions can be easily plotted in
3D as shown below and are called the atomic orbitals.

ψ1s = ψ100 ∼ e−r

This is a spherically symmetric function with a maximum at the nucleus.
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ψ2pz = ψ210 ∼ r cos θe−r/2 = ze−r/2

This orbital is aligned along along the z axis and has a node in the xy plane.
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However, the next two H-atom wavefunctions are

ψ21±1 ∼ r sin θe±iϕe−r/2

which have complex values and cannot be plotted in real space.

To obtain real orbitals from these complex wavefunctions, we take linear combinations of
ψ211 and ψ21−1.

For the positive linear combination, we have:

1√
2
(ψ211 + ψ21−1) =

1√
2

1√
64π

r sin θ
(
eiϕ + e−iϕ

)
e−r/2

=
1√
2

1√
64π

r sin θ
[
cosϕ+ i sinϕ+ cos(−ϕ) + i sin(−ϕ)

]
e−r/2

=
1√
32π

r sin θ cosϕe−r/2

=
1√
32π

xe−r/2

= ψ2px

and similarly for the negative linear combination, we have:

− i√
2
(ψ211 − ψ21−1) ∼ − i√

2

1√
64π

r sin θ
(
eiϕ − e−iϕ

)
e−r/2

= − i√
2

1√
64π

r sin θ
[
cosϕ+ i sinϕ− cos(−ϕ)− i sin(−ϕ)

]
e−r/2

=
1√
32π

r sin θ sinϕe−r/2

=
1√
32π

ye−r/2

= ψ2py

Thus, the 2px and 2py orbitals are linear combinations of ψ211 and ψ21−1 and they are
not true eigenstates of the Lz angular momentum operator. Similarly, for the d orbitals,
ψ3dz2 = ψ320 but the other four real d orbitals are linear combinations of the complex H-
atom wavefunctions and are not eigenfunctions of Lz.
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The expectation value, ⟨Lz⟩, for an electron in either a 2px or 2py orbital would be zero:

⟨ψ2pz |Lz|ψ2px⟩ =

〈
1√
2
(ψ211 + ψ21−1)

∣∣∣∣Lz

∣∣∣∣ 1√
2
(ψ211 + ψ21−1)

〉
=

1

2
⟨ψ211|Lz|ψ211⟩+

1

2
⟨ψ21−1|Lz|ψ21−1⟩

=
1

2
⟨ψ211|ℏψ211⟩+

1

2
⟨ψ21−1| − ℏψ21−1⟩

=
1

2
ℏ− 1

2
ℏ

= 0

A measurement of Lz would yield either m = 1 or m = −1, each with 50% probability.

8.4 Some Expectation Values

The expectation value, ⟨r⟩, is useful as a rough measure of orbital size. Because the spherical
harmonic functions are normalized and do not depend on r, this expectation value (in a.u.)
can be shown to be

⟨r⟩ = ⟨nℓm|r|nℓm⟩

=

∫ ∞

0

Rnℓ(r)rRnℓ(r)r
2dr

=

∫ ∞

0

r3Rnℓ(r)dr

=
n2

Z

[
1 +

1

2

(
1− ℓ(ℓ+ 1)

n2

)]
So the orbital size increases with the principle quantum number, n, and also decreases slightly
with increasing angular momentum quantum number, ℓ.

It can also be shown that 〈
1

r

〉
=
Z

n2

and the expectation value of the potential is

⟨V ⟩ = −Z
〈
1

r

〉
= −Z

2

n2

For a general hydrogen-like atom with nuclear charge Z, the energies are

En = − Z
2

2n2
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so we have the result that
⟨V ⟩ = 2⟨E⟩

The result that ⟨V ⟩ = 2⟨E⟩ is called the virial theorem. It is valid for any Coulombic
potential energy (i.e. V ∼ 1/r), so it is valid for all atoms and molecules.

8.5 The Hydrogen Atomic Spectrum

For a H atom, the energy levels (in a.u.) are

En = − 1

2n2

The spectrum arises from transitions between states. For the transition from state n′ to
state n, the frequency of emitted radiation is

ω =
1

2

(
1

n′2 −
1

n

)
For a given n, the set of transitions from n′ = n + 1, n + 2, . . . constitute a series of bright
lines, located in different regions of the electromagnetic spectrum.

n = 1 Lyman series UV

n = 2 Balmer series visible

n = 3 Paschen series IR

n=1

n=2

n=3

n=4
n=5

Not all transitions between states are allowed. The selection rules require a non-zero tran-
sition dipole moment

⟨nℓm|z|n′ℓ′m′⟩ ≠ 0

for an allowed transition. As discussed for the rigid rotor, this requires ∆ℓ = ±1. It also
requires ∆m = 0,±1. Therefore, spontaneous transitions between different energy levels of
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a H atom are only possible with

∆ℓ = ±1 and ∆m = 0,±1

Allowed transitions for the Lyman and Balmer series are:

n=1

n=2

n=3

1s

2s

3s

2p

3p 3d

n=1

n=2

n=3

1s

2s

3s

2p

3p 3d



Chapter 9

Spin and Many-Electron Atoms

9.1 Electron Spin

One further level of quantization in atoms and molecules is electron “spin”. An electron has
a spin angular momentum of

|s| = 1

2
ℏ

The QM treatment of spin (S) is identical to the treatment of orbital angular momentum
(L). The eigenvalue equations are

S2|χ⟩ = s(s+ 1)ℏ2|χ⟩

Sz|χ⟩ = msℏ2|χ⟩

For an electron, s = 1/2 and ms = ±1/2.

The spin is independent of the spatial coordinates, (r, θ, ϕ), so we cannot write out the
eigenfunctions in coordinate space. Common representations for the spin eigenfunctions are

|α⟩ or |↑⟩ for ms =
1

2

|β⟩ or |↓⟩ for ms = −
1

2

The spin functions are orthonormal so that

⟨α|α⟩ = ⟨β|β⟩ = 1

⟨α|β⟩ = ⟨β|α⟩ = 0

71
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Due to spin, the states of the H atom are all doubly degenerate (spin up or spin down).
The spatial orbitals are represented as ψnℓmℓ

or |nℓmℓ⟩ and can be occupied by 2 electrons.
The spin orbitals are represented as ψnℓmℓms or |nℓmℓms⟩ and only be occupied by a single
electron.

Taking spin into account, it is possible to define another set of eigenstates, involving the
total (orbital plus spin) angular momentum. We take their vector sum as

J = L+ S

and the square of the total angular momentum is

J 2 = L2 + S2 + 2L · S

The eigenvalue equations are

J 2|nℓjmj⟩ = j(j + 1)ℏ2|nℓjmj⟩

Jz|nℓjmj⟩ = mjℏ2|nℓjmj⟩

Wavefunctions can be written in terms of either nℓmℓms or nℓjmj quantum numbers and
conversion between the two is done using tables of Clebsh-Gordon coefficients, although this
is beyond the scope of this course.

Consideration of different spin states is important for heavy elements due to spin-orbit
coupling, and when considering the effect of a magnetic field on atomic energy levels, as in
NMR or ESR spectroscopy.

9.2 The Pauli Exclusion Principle

Before we can consider multi-electron systems, there is one further constraint we must impose
on the wavefunction that arises from the indistinguishability of identical particles.

For a system of n identical particles, the wavefunction depends on their positions and spins.
We will define the vector q = (x, y, z,ms) to give the spatial and spin coordinates. The
wavefunction can then be written as

ψ = ψ(q1,q2, . . . ,qn)

We also define the permutation operator, Pij that interchanges the coordinates (both space
and spin) of particles i and j so that

P12ψ(q1,q2, . . . ,qn) = ψ(q2,q1, . . . ,qn)
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Since the labeling is arbitrary, this permutation cannot affect the physical state of the system.

Two wavefunctions that correspond to the same state must be identical, to within a constant
phase factor

Pijψ = cψ

so ψ is an eigenfunction of Pij. Also, application of Pij twice recovers the original wavefunc-
tion, so

P2
ijψ = ψ

However,
P2

ijψ = Pij(cψ) = c2ψ

Equating these two results means that c2 = 1, so c = ±1. Therefore, the wavefunction must
be either symmetric on antisymmetric with respect to interchange of any two particles.

To illustrate the consequences of this constraint, let’s consider two non-interacting particles
in a 1D box of width a. The Schrödinger equation is

− ℏ2

2m

(
∂2

∂x21
+

∂2

∂x22

)
ψ = Eψ

and the solution is a product of two particle in a box wavefunctions

ψmn(x1, x2) = ψm(x1)ψn(x2)

For the specific case of the particles being in the first two
energy states,

ψ12(x1, x2) =
2

a
sin
(πx1
a

)
sin

(
2πx1
a

)
The probability of finding particle 1 at x1 = a/4 and particle
2 at x2 = a/2 is zero because ψ2(a/2) = 0. However, the
probability of finding particle 1 at x1 = a/2 and particle 2
at x2 = a/4 is non-zero. This is not physically meaningful
since the particles are indistinguishable. The wavefunction
must be either symmetric or antisymmetric with respect to
interchange. 0 a/2 a

ψ
 2

x

ψ1
ψ2

Symmetric and antisymmetric wavefunctions can be constructed from the individual particle
in a box wavefunctions for each particle and are

ψS
mn =

1√
2
[ψm(x1)ψn(x2) + ψm(x2)ψn(x1)]
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ψA
mn =

1√
2
[ψm(x1)ψn(x2)− ψm(x2)ψn(x1)]

For the cases of ψS
12 and ψA

12, the resulting probability densities are

ψS
12: high probability of finding both

particles at the same point.
ψA
12: zero probability of finding both

particles at the same point.

Experiment shows that there are two types of fundamental particles, with one type having
each of the behaviours shown above:

� Fermions - antisymmetric with respect to interchange
� Bosons - symmetric with respect to interchange

and electrons are Fermions.

The Pauli Exclusion Principle states that the wavefunction of a system of electrons must
be antisymmetric with respect to interchange of any two electrons. This is also the 6th and
final postulate of QM.

An important consequence of this principle can be seen by considering the value of a wave-
function when two electrons have the same space and spin coordinates (i.e. qi = qj). Then,

ψ = ψ(q1,q2, . . . ,qi,qi, . . . ,qn)

but ψ must be antisymmetric with respect to interchange of i and j. This leads to ψ = −ψ,
and this can only be true for ψ = 0.

Therefore, another statement of the Pauli Exclusion Principle is that two electrons with
the same spin have zero probability of being found at the same point in space.
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9.3 The Helium Atom Ground State

The He-atom Hamiltonian, in atomic units, is

H = −1

2
∇2

1 −
1

2
∇2

2 −
2

r1
− 2

r2
+

1

r12

The first two terms are the kinetic energies of electrons 1
and 2, respectively. The next two terms are the attractive
electrostatic interactions of electrons 1 and 2 with the
nucleus (charge Z = 2). The last term is the repulsive
electrostatic interaction between the two electrons.

e
1

e
2

r
1

r
2

r
12

This resembles a repetition of the H-atom problem for electrons 1 and 2, except that the last
term

1

r12
=

1

|r1 − r2|
is not separable into functions of the individual electron coordinates. This means that the
Schrödinger equation cannot be solved analytically for this system and approximate methods
must be used. This is true for all atoms or molecules with two or more electrons.

We can use perturbation theory to solve this by treating the 1/r12 as the perturbation.

H′ =
1

r12

Thus, our unperturbed Hamiltonian will be

H◦ = −1

2
∇2

1 −
1

2
∇2

2 −
2

r1
− 2

r2
= H◦

1 +H◦
2

which is the sum of two hydrogen-like Hamiltonians, one for each electron. This would be
exact if the electrons did not interact with each other.

The unperturbed spatial wavefunctions are the product of the hydrogen-like orbitals. For
the ground state, this is

ψ◦ = ψ1s(r1)ψ1s(r2) = 1s(1)1s(2)

We must also take spin into account (since there is more than one electron) and multiply
this spatial wavefunction by a spin eigenfunction.

We will use the notation α(i) or β(i) to indicate a state in which electron i is spin up or spin
down, respectively.
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There are four normalized spin eigenfunctions that satisfy the requirement of being either
symmetric or antisymmetric with respect to exchange:

symmetric, “triplet” spin functions


α(1)α(2)
β(1)β(2)
1√
2

[
α(1)β(2) + α(2)β(1)

]
antisymmetric, “singlet” spin function

{
1√
2

[
α(1)β(2)− α(2)β(1)

]
According to the Pauli principle, the total wavefunction must be antisymmetric with respect
to exchange. The spatial part is 1s(1)1s(2), which is symmetric. Therefore, the spin part
must be antisymmetric and

ψ◦ = 1s(1)1s(2)
1√
2

[
α(1)β(2)− α(2)β(1)

]
However, the spin terms will not affect the energy (since the Hamiltonian does not depend
on spin), so we need consider only the spatial part. To show this:

E = ⟨ψ|H|ψ⟩

=

〈
1s(1)1s(2)

1√
2

[
α(1)β(2)− α(2)β(1)

]∣∣∣∣H∣∣∣∣1s(1)1s(2) 1√
2

[
α(1)β(2)− α(2)β(1)

]〉
= ⟨1s(1)1s(2)|H|1s(1)1s(2)⟩1

2
⟨α(1)β(2)− α(2)β(1)|α(1)β(2)− α(2)β(1)⟩

= ⟨1s(1)1s(2)|H|1s(1)1s(2)⟩1
2

[
⟨α(1)|α(1)⟩⟨β(2)|β(2)⟩ − ⟨α(1)|β(1)⟩⟨β(2)|α(2)⟩ −

⟨β(1)|α(1)⟩⟨α(2)|β(2)⟩+ ⟨β(1)|β(1)⟩⟨α(2)|α(2)⟩
]

= ⟨1s(1)1s(2)|H|1s(1)1s(2)⟩1
2
(1− 0− 0 + 1)

= ⟨1s(1)1s(2)|H|1s(1)1s(2)⟩

The energy using the zeroth-order wavefunction is

E◦ = ⟨ψ◦|H◦|ψ◦⟩

=

〈
1s(1)1s(2)

∣∣∣∣− 1

2
∇2

1 −
1

2
∇2

2 −
2

r1
− 2

r2

∣∣∣∣1s(1)1s(2)〉
=

〈
1s(1)1s(2)

∣∣∣∣− 1

2
∇2

1 −
2

r1

∣∣∣∣1s(1)1s(2)〉+

〈
1s(1)1s(2)

∣∣∣∣− 1

2
∇2

2 −
2

r2

∣∣∣∣1s(1)1s(2)〉
=

〈
1s(1)

∣∣∣∣− 1

2
∇2

1 −
2

r1

∣∣∣∣1s(1)〉 ⟨1s(2)|1s(2)⟩+〈1s(2)∣∣∣∣− 1

2
∇2

2 −
2

r2

∣∣∣∣1s(2)〉 ⟨1s(1)|1s(1)⟩
=

〈
1s(1)

∣∣∣∣− 1

2
∇2

1 −
2

r1

∣∣∣∣1s(1)〉+

〈
1s(2)

∣∣∣∣− 1

2
∇2

2 −
2

r2

∣∣∣∣1s(2)〉
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Each of these terms is the expectation value of the energy for a hydrogen-like atom with a
nuclear charge Z = 2 for the ground state (n = 1). Since the energies of a hydrogen-like
atom are E = −Z2/2n2, the energy is simply:

E = −22

2
− 22

2
= −4

So the uncorrected energy is E◦ = −4 a.u.

Next, we evaluate the first-order correction. Recall that the perturbation is

H′ =
1

r12

so the first-order energy correction is

E(1) = ⟨ψ◦|H′|ψ◦⟩

=

〈
1s(1)1s(2)

∣∣∣∣ 1r12
∣∣∣∣1s(1)1s(2)〉

This quantity is called the Coulomb integral, J . This is a 6D integral over the spatial
coordinates (r1, θ1, ϕ1) for electron 1 and (r2, θ2, ϕ2) for electron 2. It can be shown that this
integral is

J =
5Z

8

for the 1s orbitals of a general hydrogen-like atom with nuclear charge Z. Thus, for the
helium atom, we have E(1) = 5/4 a.u.

To first order, the total ground-state energy of He is predicted to be

E = E◦ + E(1) = −4 + 5

4
= −11

4
= −2.75 a.u.

This is in fair agreement with the exact result (obtained from numerical solution) of EHe =
−2.903724 a.u. However, the error is 0.154 a.u. or ∼ 400 kJ/mol, which is on the order
of covalent bond strengths! It is not surprising that our result is not that accurate, since
electron-electron repulsion is not a small perturbation. Much more accurate approximations
must be used for quantitative predictions.

More sophisticated, numerical approaches are needed and will be discussed in CHEM 4301/5301.
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9.4 Helium Atom Excited States

The lowest-lying excited states for He have the electron configu-
ration 1s12s1. The spatial parts of these wavefunctions are

ψsinglet =
1√
2

[
1s(1)2s(2) + 1s(2)2s(1)

]
ψtriplet =

1√
2

[
1s(1)2s(2)− 1s(2)2s(1)

]
where ψsinglet would be paired with the singlet spin function and
ψtriplet could be paired with any of the three triplet spin functions.

2s ↓

1s ↑

singlet

2s ↑

1s ↑

triplet

We will write a general form of the spatial wavefunction as

ψ =
1√
2

[
1s(1)2s(2)± 1s(2)2s(1)

]
The corresponding zeroth-order energy is the sum of the two H-atom orbital energies

E◦ = − Z
2

2n2
1

− Z2

2n2
2

= −Z
2

2

(
1

n2
1

+
1

n2
2

)
= −22

2

(
1

12
+

1

22

)
= −5

2
a.u.

The first-order energy correction is

E(1) = ⟨ψ|H′|ψ⟩

=
1

2

〈
1s(1)2s(2)± 1s(2)2s(1)

∣∣∣∣ 1r12
∣∣∣∣1s(1)2s(2)± 1s(2)2s(1)

〉
=

〈
1s(1)2s(2)

∣∣∣∣ 1r12
∣∣∣∣1s(1)2s(2)〉±〈1s(1)2s(2)∣∣∣∣ 1r12

∣∣∣∣1s(2)2s(1)〉
= J ±K

The first term is called the Coulomb integral (J) and the second is called the exchange
integral (K).
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The energy, to first order, is then

Esinglet = −5

2
+ J +K

Etriplet = −5

2
+ J −K

Since both J and K are positive (due to electron-electron repulsion), the triplet state will
be lower in energy. This is because, in the triplet, ψ = 0 when r1 = r2, so there is zero
probability of finding the electrons at the same point in space. It is this additional stability
that gives rise to Hund’s rule of maximum electron unpairing for degenerate energy levels.

9.5 Many-Electron Atoms

The approach for He can be generalized to many-electron atoms. For example, the Hamil-
tonian for the Li atom is

H =
3∑

i=1

(
−1

2
∇2

i −
Z

ri

)
+
∑
i<j

1

rij

Treating the 1/rij terms as a perturbation, we would predict that the zeroth-order approxi-
mation for the spatial part of the ground-state wavefunction is 1s(1)1s(2)1s(3). However, this
violates the Pauli exclusion principle as we only have twofold degeneracy for the 1s orbital –
α or β spin. The correct zeroth-order approximation would be of the form 1s(1)1s(2)2s(3).

We must also ensure that the total wavefunction is antisymmetric with respect to exchanging
any two electron indices. The solution is to write the wavefunction as a Slater determinant.

ψ =
1√
6

∣∣∣∣∣∣
1sα(1) 1sβ(1) 2sα(1)
1sα(2) 1sβ(2) 2sα(2)
1sα(3) 1sβ(3) 2sα(3)

∣∣∣∣∣∣
2s ↑

1s ↑↓

Properties of determinants ensure this wavefunction is antisymmetric with respect to ex-
change (recall that the sign of determinants flip if columns or rows exchange order). The
1/

√
6 prefactor ensures normalization.

In general, for a N -electron atom, the Hamiltonian is

H =
N∑
i=1

(
−1

2
∇2

i −
Z

ri

)
+
∑
i<j

1

rij
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The zeroth-order wavefunction can be written as a Slater determinant

ψ =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ2(1) · · · ϕN(1)
ϕ1(2) ϕ2(2) · · · ϕN(2)
...

...
. . .

...
ϕ1(N) ϕ2(N) · · · ϕN(N)

∣∣∣∣∣∣∣∣∣
where ϕ1, ϕ2, . . . , ϕN are spin orbitals, the order of which is chosen according to the AUFBAU
(filling) principle.


